SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wallén Mackenzie Åsa) srt2:(2015-2019)"

Sökning: WFRF:(Wallén Mackenzie Åsa) > (2015-2019)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schweizer, Nadine, et al. (författare)
  • Reduced Vglut2/Slc17a6 Gene Expression Levels throughout the Mouse Subthalamic Nucleus Cause Cell Loss and Structural Disorganization Followed by Increased Motor Activity and Decreased Sugar Consumption
  • 2016
  • Ingår i: eNeuro. - 2373-2822. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson's disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system.
  •  
2.
  •  
3.
  • Viereckel, Thomas, et al. (författare)
  • Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson's Disease
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson's disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders.
  •  
4.
  • Viereckel, Thomas, 1987- (författare)
  • United in Diversity : A Physiological and Molecular Characterization of Subpopulations in the Basal Ganglia Circuitry
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Basal Ganglia consist of a number of different nuclei that form a diverse circuitry of GABAergic, dopaminergic and glutamatergic neurons. This complex network is further organized in subcircuits that govern limbic and motor functions in humans and other vertebrates. Due to the interconnection of the individual structures, dysfunction in one area or cell population can affect the entire network, leading to synaptic and molecular alterations in the circuitry as a whole. The studies in this doctoral thesis aimed at characterizing restricted subpopulations of neurons in the Basal Ganglia circuitry and their importance in the wider function of the network. To this end, we identified subpopulations of neurons in the subthalamic nucleus (STN), substantia nigra (SN) and ventral tegmental area (VTA), characterized their molecular profile and investigated their physiological role in the circuitry.Within the mouse STN, reduction of glutamatergic neurotransmission in a subpopulation expressing Paired-like homeodomain transcription factor 2 (Pitx2) led to structural alterations in the nucleus as well as biochemical alterations of the dopaminergic system in the Nucleus accumbens (NAc) and changes in reward-related behavior. In the ventral midbrain, we identified and characterized novel marker genes selective to the VTA or SN. Of these, transient receptor potential cation channel subfamily V member 1 (TrpV1) marks a population of mainly glutamatergic neurons in the VTA which project to the NAc, while gastrin releasing peptide (Grp) is expressed in a population of dopaminergic neurons neuroprotected in Parkinson's disease. Furthermore, we discovered that disruption of glutamatergic co-release of dopaminergic neurons expressing dopamine transporter (DAT), diminishes fast EPSCs and glutamate release but does not affect the acquisition of reward-related behavioral tasks. To selectively quantify glutamate release from specific subpopulations, we devised a technique combining glutamate-amperometry and optogenetics. This was used to measure glutamate released from Pitx2-expressing synaptic terminals in the Globus pallidus as well as DAT- or TrpV1-expressing terminals in the NAc.In summary, this doctoral thesis has furthered understanding of the function and importance of specific subpopulations within the Basal Ganglia circuitry and provides a novel means to investigate glutamate in the intact rodent brain within clearly defined, restricted cell populations.
  •  
5.
  • Viereckel, Thomas, et al. (författare)
  • Validated multi‐step approach for in vivo recording and analysis of optogenetically evoked glutamate in the mouse globus pallidus
  • 2018
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 145:2, s. 125-138
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise quantification of extracellular glutamate concentrations upon neuronal activation is crucial for the understanding of brain function and neurological disorders. While optogenetics is an outstanding method for the correlation between distinct neurons and their role in circuitry and behavior, the electrochemically inactive nature of glutamate has proven challenging for recording upon optogenetic stimulations. This difficulty is due to the necessity for using enzyme-coated microelectrodes and the risk for light-induced artifacts. In this study, we establish a method for the combination of invivo optogenetic stimulation with selective measurement of glutamate concentrations using enzyme-coated multielectrode arrays and amperometry. The glutamatergic subthalamic nucleus (STN), which is the main electrode target site in deep brain stimulation treatment of advanced Parkinsons disease, has recently proven opotogenetically targetable in Pitx2-Cre-transgenic mice and was here used as model system. Upon stereotactic injection of viral Channelrhodopsin2-eYFP constructs into the STN, amperometric recordings were performed at a range of optogenetic stimulation frequencies in the globus pallidus, the main STN target area, in anesthetized mice. Accurate quantification was enabled through a multi-step analysis approach based on self-referencing microelectrodes and repetition of the experimental protocol at two holding potentials, which allowed for the identification, isolation and removal of photoelectric and photoelectrochemical artifacts. This study advances the field of invivo glutamate detection with combined optogenetics and amperometric recordings by providing a validated analysis framework for application in a wide variety of glutamate-based approaches in neuroscience.
  •  
6.
  • Wang, Dong V., et al. (författare)
  • Disrupting Glutamate Co-transmission Does Not Affect Acquisition of Conditioned Behavior Reinforced by Dopamine Neuron Activation
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 18:11, s. 2584-2591
  • Tidskriftsartikel (refereegranskat)abstract
    • Dopamine neurons in the ventral tegmental area (VTA) were previously found to express vesicular glutamate transporter 2 (VGLUT2) and to co-transmit glutamate in the ventral striatum (VStr). This capacity may play an important role in reinforcement learning. Although it is known that activation of the VTA-VStr dopamine system readily reinforces behavior, little is known about the role of glutamate co-transmission in such reinforcement. By combining electrode recording and optogenetics, we found that stimulation of VTA dopamine neurons in vivo evoked fast excitatory responses in many VStr neurons of adult mice. Whereas conditional knockout of the gene encoding VGLUT2 in dopamine neurons largely eliminated fast excitatory responses, it had little effect on the acquisition of conditioned responses reinforced by dopamine neuron activation. Therefore, glutamate co-transmission appears dispensable for acquisition of conditioned responding reinforced by DA neuron activation.
  •  
7.
  • Bagchi, Sonchita, et al. (författare)
  • In Situ Proximity Ligation Assay (PLA)
  • 2015
  • Ingår i: ELISA. - New York, NY : Springer-Verlag New York. - 9781493927425 - 9781493927418 ; , s. 149-159
  • Bokkapitel (refereegranskat)abstract
    • In situ proximity ligation assay (PLA) is a method to identify physical closeness of proteins, where a signal will only be produced if the two proteins are closer than 40 nm, in tissue section or cell cultures. Modifications of the PLA method can also be used to increase specificity or sensitivity of standard immunohistochemistry protocols.
  •  
8.
  • Bimpisidis, Zisis, et al. (författare)
  • Neurocircuitry of Reward and Addiction : Potential Impact of Dopamine-Glutamate Co-release as Future Target in Substance Use Disorder
  • 2019
  • Ingår i: Journal of Clinical Medicine. - : MDPI. - 2077-0383. ; 8:11
  • Forskningsöversikt (refereegranskat)abstract
    • Dopamine-glutamate co-release is a unique property of midbrain neurons primarily located in the ventral tegmental area (VTA). Dopamine neurons of the VTA are important for behavioral regulation in response to rewarding substances, including natural rewards and addictive drugs. The impact of glutamate co-release on behaviors regulated by VTA dopamine neurons has been challenging to probe due to lack of selective methodology. However, several studies implementing conditional knockout and optogenetics technologies in transgenic mice have during the past decade pointed towards a role for glutamate co-release in multiple physiological and behavioral processes of importance to substance use and abuse. In this review, we discuss these studies to highlight findings that may be critical when considering mechanisms of importance for prevention and treatment of substance abuse.
  •  
9.
  • Bimpisidis, Zisis, et al. (författare)
  • The NeuroD6 Subtype of VTA Neurons Contributes to Psychostimulant Sensitization and Behavioral Reinforcement
  • 2019
  • Ingår i: eNeuro. - : SOC NEUROSCIENCE. - 2373-2822. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Reward-related behavior is complex and its dysfunction correlated with neuropsychiatric illness. Dopamine (DA) neurons of the ventral tegmental area (VTA) have long been associated with different aspects of reward function, but it remains to be disentangled how distinct VTA DA neurons contribute to the full range of behaviors ascribed to the VTA. Here, a recently identified subtype of VTA neurons molecularly defined by NeuroD6 (NEX1M) was addressed. Among all VTA DA neurons, less than 15% were identified as positive for NeuroD6. In addition to dopaminergic markers, sparse NeuroD6 neurons expressed the vesicular glutamate transporter 2 (Vglut2) gene. To achieve manipulation of NeuroD6 VTA neurons, NeuroD6(NEX)-Cre-driven mouse genetics and optogenetics were implemented. First, expression of vesicular monoamine transporter 2 (VMAT2) was ablated to disrupt dopaminergic function in NeuroD6 VTA neurons. Comparing Vmat2(Cre)(lox/lox;NEX-) conditional knock-out (cKO) mice with littermate controls, it was evident that baseline locomotion, preference for sugar and ethanol, and place preference upon amphetamine-induced and cocaine-induced conditioning were similar between genotypes. However, locomotion upon repeated psychostimulant administration was significantly elevated above control levels in cKO mice. Second, optogenetic activation of NEX-Cre VTA neurons was shown to induce DA release and glutamatergic postsynaptic currents within the nucleus accumbens. Third, optogenetic stimulation of NEX-Cre VTA neurons in vivo induced significant place preference behavior, while stimulation of VTA neurons defined by Calretinin failed to cause a similar response. The results show that NeuroD6 VTA neurons exert distinct regulation over specific aspects of reward-related behavior, findings that contribute to the current understanding of VTA neurocircuitry.
  •  
10.
  • Dumas, Sylvie, et al. (författare)
  • Developmental Co-expression of Vglut2 and Nurr1 in a Mes-Di-Encephalic Continuum Preceeds Dopamine and Glutamate Neuron Specification
  • 2019
  • Ingår i: Frontiers in Cell and Developmental Biology. - : FRONTIERS MEDIA SA. - 2296-634X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Midbrain dopamine (DA) neurons exist as several subtypes and are found in a heterogeneous environment including GABAergic and glutamatergic neurons as well as various types of co-releasing neurons. Developmental programs underlying this heterogeneity have remained elusive. In this study, combinatorial mRNA analysis was performed at stages when neuronal phenotypes are first specified. Vesicular transporters for dopamine and other monoamines (VMAT2), GABA (VIAAT), and glutamate (VGLUT2) were assessed by systematically applying fluorescent in situ hybridization through the mes-di-encephalon of the mouse embryo at embryonal days (E) 9.5-14.5. The results show that early differentiating dopamine neurons express the gene encoding VGLUT2 before onset of any dopaminergic markers. Prior to its down-regulation in maturing dopamine neurons, Vglut2 mRNA co-localizes extensively with Tyrosine hydroxylase (Th) and Nurr1, commonly used as markers for DA neurons. Further, Vglut2 and Nurr1 mRNAs are shown to overlap substantially in diencephalic neurons that maintain a glutamatergic phenotype. The results suggest that Vglut2/Nurr1-double positive cells give rise both to dopaminergic and glutamatergic neurons within the mes-di-encephalic area. Finally, analysis of markers representing subtypes of dopamine neurons, including the newly described NeuroD6 subtype, shows that certain subtype specifications arise early. Histological findings are outlined in the context of neuroanatomical concepts and the prosomeric model of brain development. The study contributes to the current decoding of the recently discovered heterogeneity among neurons residing along the cephalic flexure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (16)
doktorsavhandling (2)
forskningsöversikt (2)
annan publikation (1)
konferensbidrag (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Wallén-Mackenzie, Ås ... (21)
Viereckel, Thomas (6)
Dumas, Sylvie (6)
Konradsson-Geuken, Å ... (5)
Bimpisidis, Zisis (4)
Nylander, Ingrid (3)
visa fler...
Comasco, Erika (3)
Nordenankar, Karin (3)
Nilsson, Kent W. (3)
Schweizer, Nadine (3)
Fredriksson, Robert (2)
Andershed, Henrik, 1 ... (2)
Comasco, Erika, 1982 ... (2)
Andershed, Anna-Kari ... (2)
Arvidsson, Emma (2)
Birgner, Carolina (2)
Tuvblad, Catherine, ... (2)
Granholm, Linnea (2)
Nylander, Ingrid, 19 ... (2)
Zell, Vivien (2)
Vlcek, Bianca (2)
Hnasko, Thomas S. (2)
Bergquist, Jonas (1)
Blom, Hans (1)
Bergfors, Assar (1)
Widengren, Jerker (1)
Patra, Kalicharan (1)
Mahmoudi, Souha (1)
Olson, Lars (1)
Kullander, Klas (1)
Levesque, Daniel (1)
Broberger, Christian (1)
Hodgins, Sheilagh (1)
Andersson, Malin (1)
Åslund, Cecilia (1)
Peuckert, Christiane (1)
Lagerström, Malin C. (1)
Arvidsson, Emma, 198 ... (1)
Bagchi, Sonchita (1)
Segerström, Lova (1)
Nillson, Kent W. (1)
Rönnlund, Daniel (1)
Emilsson, Lina (1)
König, Niclas, 1986- (1)
Stagkourakis, Stefan ... (1)
Giros, Bruno (1)
Blunder, Martina (1)
Svenningsson, Per, P ... (1)
Silberberg, Gilad (1)
Limbach, Christoph (1)
visa färre...
Lärosäte
Uppsala universitet (23)
Karolinska Institutet (4)
Mälardalens universitet (2)
Örebro universitet (2)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy