SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wallin Gunnar B 1936) srt2:(2010-2014)"

Sökning: WFRF:(Wallin Gunnar B 1936) > (2010-2014)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barnes, J. N., et al. (författare)
  • Aging enhances autonomic support of blood pressure in women
  • 2014
  • Ingår i: Hypertension. - 0194-911X .- 1524-4563. ; 63:2, s. 303-308
  • Tidskriftsartikel (refereegranskat)abstract
    • The autonomic nervous system plays a central role in both acute and chronic blood pressure regulation in humans. The activity of the sympathetic branch of the autonomic nervous system is positively associated with peripheral resistance, an important determinant of mean arterial pressure in men. In contrast, there is no association between sympathetic nerve activity and peripheral resistance in women before menopause, yet a positive association after menopause. We hypothesized that autonomic support of blood pressure is higher after menopause in women. We examined the effect of ganglionic blockade on arterial blood pressure and how this relates to baseline muscle sympathetic nerve activity in 12 young (25±1 years) and 12 older postmenopausal (61±2 years) women. The women were studied before and during autonomic blockade using trimethaphan camsylate. At baseline, muscle sympathetic nerve activity burst frequency and burst incidence were higher in the older women (33±3 versus 15±1 bursts/min; 57±5 versus 25±2 bursts/100 heartbeats, respectively; P<0.05). Muscle sympathetic nerve activity bursts were abolished by trimethaphan within minutes. Older women had a greater decrease in mean arterial pressure (-29±2 versus-9±2 mm Hg; P<0.01) and total peripheral resistance (-10±1 versus-5±1 mm Hg/L per minute; P<0.01) during trimethaphan. Baseline muscle sympathetic nerve activity was associated with the decrease in mean arterial pressure during trimethaphan (r=-0.74; P<0.05). In summary, our results suggest that autonomic support of blood pressure is greater in older women compared with young women and that elevated sympathetic nerve activity in older women contributes importantly to the increased incidence of hypertension after menopause. © 2013 American Heart Association, Inc.
  •  
2.
  • Dutoit, Andrea P, et al. (författare)
  • Cardiac baroreflex sensitivity is not correlated to sympathetic baroreflex sensitivity within healthy, young humans.
  • 2010
  • Ingår i: Hypertension. - 1524-4563. ; 56:6, s. 1118-1123
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to evaluate the relationship between the cardiac and sympathetic baroreflex sensitivities within healthy, young humans. The sensitivities of the cardiac and sympathetic baroreflexes were compared in 53 normotensive individuals (28 men and 25 women; age: 24.0 ± 0.9 years; body mass index: 24.0 ± 0.3 cm/kg², mean ± SEM). Heart rate, arterial blood pressure, and peroneal muscle sympathetic nerve activity were recorded under resting conditions (heart rate: 58 ± 1 bpm; systolic blood pressure: 126 ± 2 mm Hg; diastolic blood pressure: 72 ± 1 mm Hg; mean arterial blood pressure: 89 ± 1 mm Hg; muscle sympathetic nerve activity: 18 ± 1 bursts per min) and during rapid changes in blood pressure induced by sequential boluses of nitroprusside and phenylephrine. Cardiac and sympathetic baroreflex sensitivities were analyzed using the slopes of the linear portions of the muscle sympathetic nerve activity-diastolic blood pressure and R-R interval-systolic blood pressure relationships, respectively. When individual cardiac baroreflex sensitivity was compared with sympathetic baroreflex sensitivity, no correlation (R-R interval: r = -0.13; heart rate: r = 0.21) was observed when studied as a group. Analysis by sex unveiled a correlation in women between the cardiac and sympathetic baroreflex sensitivities (R-R interval: r = -0.54; P = 0.01; no correlation with hazard ratio: r = 0.29). No relationship was found in men (R-R interval: r = 0.17; heart rate: r = 0.12). These results indicate that, although both cardiac and sympathetic efferents function in baroreflex control of arterial pressure, there is no correlation in their sensitivities within healthy normotensive humans. However, sex-stratified data indicate that sex-based differential correlations might exist.
  •  
3.
  • Hart, Emma C, et al. (författare)
  • Baroreflex control of muscle sympathetic nerve activity: a nonpharmacological measure of baroreflex sensitivity.
  • 2010
  • Ingår i: American journal of physiology. Heart and circulatory physiology. - : American Physiological Society. - 1522-1539 .- 0363-6135. ; 298:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The sensitivity of baroreflex control of sympathetic nerve activity (SNA) represents the responsiveness of SNA to changes in blood pressure. In a slightly different analysis, the baroreflex threshold measures the probability of whether a sympathetic burst will occur at a given diastolic blood pressure. We hypothesized that baroreflex threshold analysis could be used to estimate the sensitivity of the sympathetic baroreflex measured by the pharmacological modified Oxford test. We compared four measures of sympathetic baroreflex sensitivity in 25 young healthy participants: the "gold standard" modified Oxford analysis (nitroprusside and phenylephrine), nonbinned spontaneous baroreflex analysis, binned spontaneous baroreflex analysis, and threshold analysis. The latter three were performed during a quiet baseline period before pharmacological intervention. The modified Oxford baroreflex sensitivity was significantly related to the threshold slope (r = 0.71, P < 0.05) but not to the binned (1 mmHg bins) and the nonbinned spontaneous baroreflex sensitivity (r = 0.22 and 0.36, respectively, P > 0.05), which included burst area. The threshold analysis was also performed during the modified Oxford manipulation. Interestingly, we found that the threshold analysis results were not altered by the vasoactive drugs infused for the modified Oxford. We conclude that the noninvasive threshold analysis technique can be used as an indicator of muscle SNA baroreflex sensitivity as assessed by the modified Oxford technique. Furthermore, the modified Oxford method does not appear to alter the properties of the baroreflex.
  •  
4.
  • Hart, Emma C, et al. (författare)
  • Hysteresis in the sympathetic baroreflex: role of baseline nerve activity.
  • 2011
  • Ingår i: The Journal of physiology. - : Wiley. - 1469-7793 .- 0022-3751. ; 589:Pt 13, s. 3395-404
  • Tidskriftsartikel (refereegranskat)abstract
    • Sympathetic baroreflex sensitivity (BRS) is greater during decreasing compared to increasing diastolic blood pressure (DBP) in young men and women. In older men and women there is no difference in sympathetic BRS to increasing and decreasing DBP. We investigated whether the sensitivity of the central nervous system to increasing and decreasing DBP is dependent upon baseline muscle sympathetic nerve activity (MSNA). We hypothesised that the difference in sympathetic BRS between falling and rising segments of DBP would be positively related to baseline MSNA in 30 young men, 21 young women, 14 older men and 14 postmenopausal women. MSNA was measured using peroneal microneurography and BRS was measured using the spontaneous baroreflex threshold technique. On average, sympathetic BRS was greater during decreasing compared to increasing DBP in young men (P <0.05) and women (P <0.05). In older men and women, mean sympathetic BRS was similar in response to increasing and decreasing DBP. The difference (delta) between the falling and rising BRS correlated with baseline MSNA in young (r =0.58, P <0.05) and older men (r =0.66, P <0.05) and postmenopausal women (r =0.74, P <0.05). Thus, all men, and older women, with higher BRS to falling DBP had lower baseline MSNA. This relationship was not observed in young women (r =0.14, P >0.05). In summary, baseline MSNA plays a role in determining sympathetic BRS to falling and rising DBP in young and older men and postmenopausal women, but not in young women. This relationship is consistent with a decreased potential for sympathoexcitation in people with higher resting MSNA. Furthermore, the lack of relationship in young women suggests important contributions of sex hormones to differential responses of MSNA to falling and rising pressures.
  •  
5.
  • Charkoudian, N, et al. (författare)
  • Integrative mechanisms of blood pressure regulation in humans and rats: cross-species similarities.
  • 2010
  • Ingår i: American journal of physiology. Regulatory, integrative and comparative physiology. - : American Physiological Society. - 1522-1490 .- 0363-6119. ; 298:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As our understanding of the importance of individualized medicine continues to grow, the clinical relevance of interindividual variability in hemodynamic variables is receiving increasing attention. However, it is not known whether the rat, which is often used for studies of cardiovascular regulation, exhibits similar interindividual variability. In the present study, we evaluated whether the magnitude of interindividual variability in cardiac output (CO) and total peripheral resistance (TPR) was similar in humans and in rats. We assessed interindividual variability of mean arterial pressure (MAP), CO, and TPR during control conditions in normotensive humans (n = 40) and during normotension and deoxycorticosterone acetate-salt hypertension in Sprague-Dawley rats (n = 16). Humans and rats showed marked interindividual variability in CO and TPR but low variability in MAP. During deoxycorticosterone acetate-salt hypertension, CO was maintained, but TPR was elevated compared with the baseline period. We conclude that the magnitudes of interindividual variability of MAP, CO, and TPR are quantitatively similar in humans and rats, providing support for the relevance of this variability in both species and suggesting that studies in rats could be designed to address questions specific to individualized medicine in hypertension.
  •  
6.
  • Charkoudian, N., et al. (författare)
  • Sympathetic neural activity to the cardiovascular system: Integrator of systemic physiology and interindividual characteristics
  • 2014
  • Ingår i: Comprehensive Physiology. - : Wiley. - 2040-4603. ; 4:2, s. 825-850
  • Tidskriftsartikel (refereegranskat)abstract
    • The sympathetic nervous system is a ubiquitous, integrating controller of myriad physiological functions. In the present article, we review the physiology of sympathetic neural control of cardiovascular function with a focus on integrative mechanisms in humans. Direct measurement of sympathetic neural activity (SNA) in humans can be accomplished using microneurography, most commonly performed in the peroneal (fibular) nerve. In humans, muscle SNA (MSNA) is composed of vasoconstrictor fibers; its best-recognized characteristic is its participation in transient, moment-to-moment control of arterial blood pressure via the arterial baroreflex. This property of MSNA contributes to its typical "bursting" pattern which is strongly linked to the cardiac cycle. Recent evidence suggests that sympathetic neural mechanisms and the baroreflex have important roles in the long term control of blood pressure as well. One of the striking characteristics of MSNA is its large interindividual variability. However, in young, normotensive humans, higher MSNA is not linked to higher blood pressure due to balancing influences of other cardiovascular variables. In men, an inverse relationship between MSNA and cardiac output is a major factor in this balance, whereas in women, beta-adrenergic vasodilation offsets the vasoconstrictor/pressor effects of higher MSNA. As people get older (and in people with hypertension) higher MSNA is more likely to be linked to higher blood pressure. Skin SNA (SSNA) can also be measured in humans, although interpretation of SSNA signals is complicated by multiple types of neurons involved (vasoconstrictor, vasodilator, sudomotor and pilomotor). In addition to blood pressure regulation, the sympathetic nervous system contributes to cardiovascular regulation during numerous other reflexes, including those involved in exercise, thermoregulation, chemoreflex regulation, and responses to mental stress.
  •  
7.
  • Donadio, V., et al. (författare)
  • Muscle sympathetic response to arousal predicts neurovascular reactivity during mental stress
  • 2012
  • Ingår i: Journal of Physiology-London. - : Wiley. - 0022-3751. ; 590:12, s. 2885-2896
  • Tidskriftsartikel (refereegranskat)abstract
    • Key points Mental stress (MS) is often initiated by a sensory or cognitive stimulus, which induces a brief arousal reaction followed by a longer stress phase. Both phases induce blood pressure (BP) increases whereas effects on muscle sympathetic nerve activity (MSNA) vary: in approximately 50% of healthy subjects (responders) arousal induces a brief MSNA reduction, which is absent in the remaining 50% (non-responders). We now report a link between the arousal response and neurovascular effects of MS in healthy males. Our data show that during MS, responders to arousal exhibited a significant decrease of MSNA and a lesser BP increase compared to non-responders. The whole material displayed a positive correlation between MSNA responses induced by arousal and MS. In addition, arousal induced MSNA changes correlated positively with BP changes during MS. We conclude that the MSNA response to arousal predicts MSNA and BP responses to MS.
  •  
8.
  • Hart, Emma C., et al. (författare)
  • Sex, ageing and resting blood pressure: Gaining insights from the integrated balance of neural and haemodynamic factors
  • 2012
  • Ingår i: Journal of Physiology. - : Wiley. - 0022-3751 .- 1469-7793. ; 590, s. 2069-2079
  • Tidskriftsartikel (refereegranskat)abstract
    • Young women tend to have lower blood pressure, and less risk of hypertension, compared to young men. As people age, both blood pressure and the risk of hypertension increase in both sexes; this occurs most strikingly in women after menopause. However, the mechanisms for these influences of sex and age remain incompletely understood. In this review we are specifically interested in the interaction between neural (sympathetic nerve activity; SNA) and haemodynamic factors (cardiac output, blood pressure and vascular resistance) and how these change with sex and age. While peripheral vascular SNA can vary 7- to 10-fold among normotensive young men and women, it is reproducible in a given individual. Surprisingly, higher levels of SNA are not associated with higher blood pressures in these groups. In young men, high SNA is associated with higher total peripheral vascular resistance (TPR), and appears to be balanced by lower cardiac output and less peripheral vascular responsiveness to adrenergic stimulation. Young women do not exhibit the SNA-TPR relationship. Recent evidence suggests that β-adrenergic vasodilatation offsets the vasoconstrictor effects of α-adrenergic vasoconstriction in young women, which may contribute to the generally lower blood pressures in this group. Sympathetic nerve activity increases with age, and in groups over 40, levels of SNA are more tightly linked to levels of blood pressure. The potentially protective β-adrenergic effect seen in young women appears to be lost after menopause and probably contributes to the increased blood pressure and increased risk of hypertension seen in older women. © 2012 The Authors. The Journal of Physiology. © 2012 The Physiological Society.
  •  
9.
  • Hart, E. C., et al. (författare)
  • Sympathetic nerve activity and peripheral vasodilator capacity in young and older men
  • 2014
  • Ingår i: American Journal of Physiology-Heart and Circulatory Physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 306:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Interindividual variability in sympathetic nerve activity (SNA) has provided insight into integrative mechanisms contributing to blood pressure (BP) regulation in humans. In young people, the influence of high SNA on BP is balanced by lower cardiac output and less adrenergic vasoconstrictor responsiveness. Older people have higher SNA and higher BP. We hypothesized that SNA has a restraining effect on peripheral vasodilator responsiveness in young and older men, such that individuals with higher tonic SNA would show less forearm vasodilatation to exogenous vasodilators. We measured muscle SNA (MSNA; microneurography) and forearm vasodilator responses to intra-arterial infusions of acetylcholine (ACh; endothelium dependent) and sodium nitroprusside (SNP; endothelium independent) in 13 young (age; 27 +/- 1 yr) and 16 older (61 +/- 2 yr) men. Forearm vascular conductance (FVC) responses to ACh were lower in the older men at the two highest doses (2 and 4 mu g.100 ml(-1).min(-1); Delta 395 +/- 81 vs. 592 +/- 87% and 412 +/- 87 vs. 616 +/- 132%, P < 0.05), and MSNA was higher (64 +/- 4 vs. 41 +/- 2 bursts/100 hb; P < 0.05). There was no difference in the FVC response to SNP between young and older men (P > 0.05). In young men, there was an inverse relationship between resting MSNA and FVC responses (%change) to both ACh and SNP (r = -0.83 and r = -0.83, respectively; P < 0.05). In older men, however, this relationship was not observed. Tonic SNA may act to restrain vasodilator responses in young men, whereas in older men a lack of such restraint may be protective against the pressor effects of higher SNA.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy