SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Erlandsson Lan) srt2:(2021)"

Sökning: WFRF:(Wang Erlandsson Lan) > (2021)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Xi, Qiaojuan, et al. (författare)
  • 中国主要流域灰-绿-蓝蓄水能力时空演变 : [Spatio-temporal variation of gray-green-blue storage capacity in nine major basins of China]
  • 2021
  • Ingår i: Chinese Science Bulletin-Chinese. - 0023-074X .- 2095-9419. ; 66:34, s. 4437-4448
  • Tidskriftsartikel (refereegranskat)abstract
    • Most of China's territory is influenced by the East Asia monsoon, and thus, the spatio-temporal distribution of surface water resources in China is extremely uneven, causing many water-related issues, e.g.. water scarcity and flooding. As the basis and essential condition of economic and social development, water-related infrastructures provide the material basis and guarantee for regulating and storing surface water resources and solving multi-dimensional water problems. The infrastructures that play an important role in surface water resource regulation and storage mainly include three types: Gray (such as dams), green (such as forests), and blue infrastructures (such as lakes). Gray infrastructures can reduce the flood peak and increase water supply during dry seasons by regulating and storing water so that the seasonal and inter-annual fluctuation of runoff is reduced, which plays an important role in water storage, water supply, flood control, and disaster mitigation. However, excessive gray infrastructures would have adverse effects on the social economy and environmental ecology. Unlike gray infrastructures, green and blue infrastructures can not only benefit water resource management but also have ecological functions, such as improving water quality and enhancing ecosystem services. Thus. it is significant to couple gray, green, and blue infrastructures to regulate the spatio-temporal distribution of water resources. However, research on the spatial distribution and temporal variation of water storage capacity is still lacking, which hinders the coordinated regulation and comprehensive management of surface water resources. Therefore, in the present study, the spatio-temporal distribution of the three aforementioned infrastructures was compared and analyzed on basin scale, based on the latest data of darns, root zone storage capacity, natural lakes, and so on. Results indicated the following: (1) Gray water storage capacity has exceeded that of the natural terrestrial surface ecosystem in the Yangtze River Basin and the Southeast Basins, where human activities are intense. (2) Gray water storage capacity has increased significantly in nine major basins from 1955 to 2020, but the timing of construction varies in different basins. (3) Green water storage capacity did not change much, the Songhua-Liaohe River Basin and the Huaihe River Basin increased slightly. (4) Blue water storage capacity shows a constantly increasing trend on the whole, in which the water storage capacity in the inland river basin (including the endorheic basin on the Tibetan Plateau) significantly increased. Our study revealed the basic information and spatio-temporal variation of gray-green-blue water storage capacities in nine major basins of China, which could lead to better coordination between natural and artificial water infrastructures and provide support for multidimensional optimization of water resource allocation.
  •  
2.
  • Ahlström, Hanna, et al. (författare)
  • An Earth system law perspective on governing social-hydrological systems in the Anthropocene
  • 2021
  • Ingår i: Earth System Governance. - : Elsevier BV. - 2589-8116. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The global hydrological cycle is characterized by complex interdependencies and self-regulating feedbacks that keep water in an ever-evolving state of flux at local, regional, and global levels. Increasingly, the scale of human impacts in the Anthropocene is altering the dynamics of this cycle, which presents additional challenges for water governance. Earth system law provides an important approach for addressing gaps in governance that arise from the mismatch between the global hydrological cycle and dispersed regulatory architecture across institutions and geographic regions. In this article, we articulate the potential for Earth system law to account for core hydrological problems that complicate water governance, including delay, redistribution, intertwinements, permanence, and scale. Through merging concepts from Earth system law with existing policy and legal principles, we frame an approach for addressing hydrological problems in the Anthropocene and strengthening institutional fit between established governance systems and the global hydrological cycle. We discuss how such an approach can be applied, and the challenges and implications for governing water as a cycle and complex social-hydrological system, both in research and practice.
  •  
3.
  • Falkenmark, Malin, et al. (författare)
  • A water-function-based framework for understanding and governing water resilience in the Anthropocene
  • 2021
  • Ingår i: One Earth. - : Elsevier BV. - 2590-3330 .- 2590-3322. ; 4:2, s. 213-225
  • Tidskriftsartikel (refereegranskat)abstract
    • The freshwater cycle over land is fundamental for sustainability and resilience, yet is extensively modified and shaped by a vast range of human interventions in the land, water, and climate systems. The consequences of human water-cycle modifications can be non-linear, delayed, and distributed across boundaries, sectors, and scale. This complexity renders freshwater challenges difficult to govern and manage. We here propose a framework for understanding water's many functions for supporting, regulating, and stabilizing hydro-climatic, hydro-ecological, and hydro-social systems. This framework recognizes human impacts on major partitioning points, interactions among water functions, and stabilization and destabilization processes. A functional understanding of the freshwater cycle can integrate with social-ecological resilience-building principles, complement existing water sustainability governance approaches, and highlight the potential need for Earth-system-level governance of water. Recognizing water's diverse functional roles for resilience may promote a new generation of holistic and integrative water- land-climate governance.
  •  
4.
  • Porkka, Miina, et al. (författare)
  • Is wetter better? Exploring agriculturally-relevant rainfall characteristics over four decades in the Sahel
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The semi-arid Sahel is a global hotspot for poverty and malnutrition. Rainfed agriculture is the main source of food and income, making the well-being of rural population highly sensitive to rainfall variability. Studies have reported an upward trend in annual precipitation in the Sahel since the drought of the 1970s and early '80s, yet farmers have questioned improvements in conditions for agriculture, suggesting that intraseasonal dynamics play a crucial role. Using high-resolution daily precipitation data spanning 1981-2017 and focusing on agriculturally-relevant areas of the Sahel, we re-examined the extent of rainfall increase and investigated whether the increases have been accompanied by changes in two aspects of intraseasonal variability that have relevance for agriculture: rainy season duration and occurrence of prolonged dry spells during vulnerable crop growth stages. We found that annual rainfall increased across 56% of the region, but remained largely the same elsewhere. Rainy season duration increased almost exclusively in areas with upward trends in annual precipitation (23% of them). Association between annual rain and dry spell occurrence was less clear: increasing and decreasing frequencies of false starts (dry spells after first rains) and post-floral dry spells (towards the end of the season) were found to almost equal extent both in areas with positive and those with no significant trend in annual precipitation. Overall, improvements in at least two of the three intraseasonal variables (and no declines in any) were found in 10% of the region, while over a half of the area experienced declines in at least one intraseasonal variable, or no improvement in any. We conclude that rainfall conditions for agriculture have improved overall only in scattered areas across the Sahel since the 1980s, and increased annual rainfall is only weakly, if at all, associated with changes in the agriculturally-relevant intraseasonal rainfall characteristics.
  •  
5.
  • Pranindita, Agnes, et al. (författare)
  • Moisture recycling and the potential role of forests as moisture source during European heatwaves
  • 2021
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 58:1-2, s. 609-624
  • Tidskriftsartikel (refereegranskat)abstract
    • Heatwaves are extreme weather events that have become more frequent and intense in Europe over the past decades. Heatwaves are often coupled to droughts. The combination of them lead to severe ecological and socio-economic impacts. Heatwaves can self-amplify through internal climatic feedback that reduces local precipitation. Understanding the terrestrial sources of local precipitation during heatwaves might help identify mitigation strategies on land management and change that alleviate impacts. Moisture recycling of local water sources through evaporation allows a region to maintain precipitation in the same region or, by being transported by winds, in adjacent regions. To understand the role of terrestrial moisture sources for sustaining precipitation during heatwaves, we backtrack and analyse the precipitation sources of Northern, Western, and Southern sub-regions across Europe during 20 heatwave periods between 1979 and 2018 using the moisture tracking model Water Accounting Model-2layers (WAM-2layers). In Northern and Western Europe, we find that stabilizing anticyclonic patterns reduce the climatological westerly supply of moisture, mainly from the North Atlantic Ocean, and enhances the moisture flow from the eastern Euro-Asian continent and from within their own regions-suggesting over 10% shift of moisture supply from oceanic to terrestrial sources. In Southern Europe, limited local moisture sources result in a dramatic decrease in the local moisture recycling rate. Forests uniformly supply additional moisture to all regions during heatwaves and thus contribute to buffer local impacts. This study suggests that terrestrial moisture sources, especially forests, may potentially be important to mitigate moisture scarcity during heatwaves in Europe.
  •  
6.
  • Roth, Nina, et al. (författare)
  • A call for consistency with the terms ‘wetter’ and ‘drier’ in climate change studies
  • 2021
  • Ingår i: Environmental Evidence. - : Springer Science and Business Media LLC. - 2047-2382. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Ongoing and future hydroclimatic changes have large environmental and societal impacts. In terrestrial ecosystems, these changes are usually described with the terms ‘wetter’ and ‘drier’, which refer to the change in the quantity and/or presence of water, either as water fluxes or stocks. We conducted a literature review of almost 500 recent climate change studies to quantitatively investigate the consistency of the use of these terms across disciplines, regarding the hydroclimatic variables they are related to. We found that although precipitation is prevalently used to describe ‘wetter’ and ‘drier’ conditions, many other variables are also used to refer to changes in water availability between research fields, pointing to a varied perspective on the use of these terms. Some studies do not define the terms at all. In order to facilitate meta-analyses across disciplines, we therefore highlight the need to explicitly state which hydroclimatic variables authors are referring to. In this way, we hope that the terms ‘wetter’ and ‘drier’ used in scientific studies are easier to relate to hydroclimatic processes, which should facilitate the application by authorities and policy makers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy