SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Hanyu) srt2:(2023)"

Sökning: WFRF:(Wang Hanyu) > (2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Qian, et al. (författare)
  • Genome-wide identification of resistance genes and cellular analysis of key gene knockout strain under 5-hydroxymethylfurfural stress in Saccharomyces cerevisiae
  • 2023
  • Ingår i: BMC Microbiology. - 1471-2180. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In bioethanol production, the main by-product, 5-hydroxymethylfurfural (HMF), significantly hinders microbial fermentation. Therefore, it is crucial to explore genes related to HMF tolerance in Saccharomyces cerevisiae for enhancing the tolerance of ethanol fermentation strains. A comprehensive analysis was conducted using genome-wide deletion library scanning and SGAtools, resulting in the identification of 294 genes associated with HMF tolerance in S. cerevisiae. Further KEGG and GO enrichment analysis revealed the involvement of genes OCA1 and SIW14 in the protein phosphorylation pathway, underscoring their role in HMF tolerance. Spot test validation and subcellular structure observation demonstrated that, following a 3-h treatment with 60mM HMF, the SIW14 gene knockout strain exhibited a 12.68% increase in cells with abnormal endoplasmic reticulum (ER) and a 22.41% increase in the accumulation of reactive oxygen species compared to the BY4741 strain. These findings indicate that the SIW14 gene contributes to the protection of the ER structure within the cell and facilitates the clearance of reactive oxygen species, thereby confirming its significance as a key gene for HMF tolerance in S. cerevisiae.
  •  
2.
  • Ren, Hanyu, et al. (författare)
  • Vegetation response to changes in climate across different climate zones in China
  • 2023
  • Ingår i: Ecological Indicators. - 1470-160X .- 1872-7034. ; 155
  • Tidskriftsartikel (refereegranskat)abstract
    • Vegetation growth is sensitive to climate change. The complex climate types of China pose great challenges to the sustainable management of vegetation on global change. Therefore, this study used Enhanced Vegetation Index (EVI) as an indicator to explore the spatiotemporal dynamics of vegetation and their driving factors in different climatic zones of China to provide theoretical support for sustainable vegetation management in different climate zones in the future. The results showed that vegetation exhibited considerable clustering patterns in the country, with high and low values concentrated in the eastern and western regions, respectively. From 2001 to 2020, both at regional and pixel scales, vegetation in China showed a significant greening trend. EVI displayed a noticeable increase within temperate and subtropical areas. The only exception is observed in the eastern coastal area of the North China Plain and Yangtze River Delta region, which experienced evident degradation trend. During this period, China's climate showed an overall trend towards warming and humidification with drying trends observed mainly over the western regions. The impact of climate changes resulted in EVI dynamics that vary over time and space. The vegetation change in China was mainly derived by changes in precipitation and radiation rather than temperature, especially in temperate and subfrigid regions. Precipitation was the main driving factor for vegetation greening in tropical and temperate regions, while radiation and temperature were the dominant climate factor for vegetation greening in subfrigid and subtropical regions, respectively. When precipitation was no longer a limiting factor for vegetation growth, the effect of temperature or radiation increases. In addition, the positive impact of precipitation on plant growth in temperate regions was much greater than that of radiation and temperature, and this difference was much greater than in tropical, subtropical, and subfrigid regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy