SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Jiabin) srt2:(2021)"

Sökning: WFRF:(Wang Jiabin) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Jiabin, et al. (författare)
  • The Effect of Bogie Positions on the Aerodynamic Behavior of a High-Speed Train: An IDDES Study
  • 2021
  • Ingår i: Flow, Turbulence and Combustion. - : Springer Science and Business Media LLC. - 1573-1987 .- 1386-6184. ; 107:2, s. 257-282
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, an improved delayed detached-eddy simulation method has been used to investigate the aerodynamic behavior of the CRH2 high-speed trains (HST) with different first and last bogie positions. The results of the numerical simulations have been validated against experimental data obtained from a previous wind tunnel test, a full-scale field test and a reduced-scale moving model test. The results of the flow prediction are used to explore the effects of the bogie positions on the slipstream, wake flow, underbody flow and aerodynamic drag. Compared with the original HST model, the downstream movement of the first bogie, has a great effect on decreasing the slipstream velocity and pressure fluctuation aside the HST, especially around the lower part of the HST. Furthermore, the size of the longitudinal vortex structure and slipstream velocity in the near wake region also decrease significantly by moving the last bogie upstream. Additionally, the movement of the first and last bogies toward the HST center, effectively decreases the drag values of the head and tail car, while a lower effect is observed on the intermediate cars.
  •  
2.
  • He, Kan, et al. (författare)
  • Assessment of LES, IDDES and RANS approaches for prediction of wakes behind notchback road vehicles
  • 2021
  • Ingår i: Journal of Wind Engineering and Industrial Aerodynamics. - : Elsevier BV. - 0167-6105. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • The capability of Large Eddy Simulations (LES), Improved Delayed Detached Eddy Simulations (IDDES) and Reynolds-Averaged Navier–Stokes Equations (RANS) to predict the flow behind notchback Ahmed body is investigated in the present paper. Simulations consider two specific models, with effective backlight angles of β1=17.8° and β2=21.0°, respectively. The focus of the study is on the prediction of the expected lateral asymmetry or symmetry of the near-wake flows. Results show that IDDES using coarse computational grids predicts the flow in agreement with LES using finer computational grids. RANS results in inaccurate flow predictions, attributed to its steady formulation relying on turbulence modelling being incapable of dealing with the studied flow. Modal analysis applying Proper Orthogonal Decomposition (POD) suggests the consistency of the wake dynamics between IDDES and LES. The presence of the wake bi-stability is validated by the wind tunnel experiment.
  •  
3.
  • He, Kan, et al. (författare)
  • Numerical investigation of the wake bi-stability behind a notchback Ahmed body
  • 2021
  • Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 926, s. A36-1-A36-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-eddy simulations are used to investigate the origin of the wake asymmetry and symmetry behind notchback Ahmed bodies. Two different effective backlight angles, beta(1) = 17.8 degrees and beta(2) = 21.0 degrees, are simulated resulting in wake asymmetry and symmetry in flows without external perturbations, in agreement with previous experimental observations. In particular, the asymmetric case presents a bi-stable nature showing, in a random fashion, two stable mirrored states characterized by a left or right asymmetry for long periods. A random switch and several attempts to switch between the bi-stability are observed. The asymmetry of the flow is ascribed to the asymmetric separations and reattachments in the wake. The deflection of the near-wall flow structures behind the slant counteracting the asymmetry drives the wake to be temporarily symmetric, triggering the switching process of the bi-stable wake. The consequence of deflection that forces the flow structure to form on the opposite side of the slant is the decisive factor for a successful switch. Modal analysis applying proper orthogonal decomposition is used for the exploration of the wake dynamics of the bi-stable nature observed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy