SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Xianhua) srt2:(2019)"

Sökning: WFRF:(Wang Xianhua) > (2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Huihui, et al. (författare)
  • Hydrothermal carbonization of natural microalgae containing a high ash content
  • 2019
  • Ingår i: Fuel. - : Elsevier BV. - 0016-2361 .- 1873-7153. ; 249, s. 441-448
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential to convert natural microalgae (Scenedesmus) into solid fuels by hydrothermal carbonization (HTC) was evaluated. The deashing microalgae (DA) were obtained by acid-washing natural microalgae (NM) with HCl. The deashing efficiency was high from 44.66% for NM to 14.45% for DA. HTC carried out at temperature in the range from 180 to 260 degrees C with this two types feedstock (i.e. NM and DA). The results showed that DA-derived hydrochars had good physicochemical and fuel properties compared with that of NM-derived hydrochars. HTC process of DA was mainly based on polymerization, and the hydrolysis process was short. The hydrochars obtained from DA at 220 degrees C (HC-D220) had the highest value of 51.86% with a carbon content and fixed carbon content 1.15 and 1.33 times, respectively, greater than that of DA. The high heating value (HHV) of HC-D220 reached 26.64 MJ/kg which is equivalent to medium-high calorific coal. The thermogravimetric analysis (TG) demonstrated that the hydrochars derived from DA have good combustion properties with stable at high temperature zones. They can easily mix with coal or replace coal in combustion application. The results of this study revealed that natural microalgae can be utilized by hydrothermal carbonization to generate renewable fuel resources.
  •  
2.
  • Zhu, Youjian, et al. (författare)
  • P-Based Additive for Reducing Fine Particulate Matter Emissions during Agricultural Biomass Combustion
  • 2019
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 33:11, s. 11274-11284
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the influence of P-containing compounds on particulate matter (PM) emissions from the combustion of agricultural residues, the combustion of cornstalk was performed with the addition of a phosphorus-based additive, namely, ammonium dihydrogen phosphate (NH4H2PO4), in a fixed-bed combustion system. Simultaneously the ash samples, including PM collected by a Dekati low-pressure impactor (DLPI) and residual ash, were analyzed with variant analytical techniques. It was found that NH4H2PO4 addition significantly reduced PM0.1 and PM0.1-1 yields but increased PM1-10 yields. The maximum PM0.1 and PM1 reduction efficiency can reach up to 50% at an optimal P/K molar ratio equal to 1. Meanwhile, the addition of NH4H2PO4 to cornstalk changed the chemical composition of PM1 from being dominated by KCl and KOH/K2CO3 with a small amount of K2SO4 to a system dominated by KPO3 and KCl with a small amount of K2SO4. Simultaneously, the possible PM1 reduction mechanism was proposed. In addition, the residual ash after combustion was rich in K- and P-containing species, indicating a potential utilization as a fertilizer. It showed that the addition of NH4H2PO4 is a promising approach to reduce PM1 emissions during the combustion of agricultural biomass. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy