SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Zhiquan) srt2:(2020-2023)"

Sökning: WFRF:(Wang Zhiquan) > (2020-2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cao, Hongwei, et al. (författare)
  • Mechanistic insights into the changes of enzyme activity in food processing under microwave irradiation
  • 2023
  • Ingår i: Comprehensive Reviews in Food Science and Food Safety. - : John Wiley & Sons. - 1541-4337. ; 22:3, s. 2465-2487
  • Forskningsöversikt (refereegranskat)abstract
    • Microwave (MW) and enzyme catalysis are two emerging processing tools in the field of food industry. Recently, MW has been widely utilized as a novel type of green and safe heating energy. However, the effect of MW irradiation on enzyme activity is not described clearly. The intrinsic mechanisms behind enzyme activation and inactivation remain obscure. To apply better MW to the field of enzyme catalysis, it is essential to gain insights into the mechanism of MW action on enzyme activity. This review summarizes the changes in various enzyme activity during food processing, especially under MW irradiation. The intrinsic mechanism of thermal and nonthermal effects of MW irradiation was analyzed from the perspective of enzyme reaction kinetics and spatial structure. MW irradiation temperature is a vital parameter affecting the catalytic activity of enzymes. Activation of the enzyme activity is achieved even at high MW power when the enzyme is operating at its optimum temperature. However, when the temperature exceeds the optimum temperature, the enzyme activity is inhibited. In addition to MW dielectric heating effect, nonthermal MW effects also alter the microenvironment of reactive system. Taken together, enzyme activity is influenced by both thermal and nonthermal MW effects.
  •  
2.
  • Cheng, Qiaoyun, et al. (författare)
  • The conversion of nanocellulose into solvent-free nanoscale liquid crystals by attaching long side-arms for multi-responsive optical materials
  • 2020
  • Ingår i: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 8:32, s. 11022-11031
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocellulose, with its unique optical and chemical properties, has received increasing attention as feedstock to fabricate sustainable materials. However, achieving a nanocellulose-based solvent-free liquid crystal with good responsiveness still remains a challenge. Herein, for the first time, solvent-free supramolecular liquid crystals were fabricated by attaching long side-arms on the fiber-like nanocellulose derived from tunicate (TCNC) with an average width of 20 nm and 400-3000 nm in length. The side-arms were grafted via surface condensation with a charged organosilane, followed by further functionalization with a counter-ion polyoxyethylene ether. The nanoscale liquid crystals consisted of the stiff TCNC as the core and flexible side-arms as the soft shells, forming the core-shell structure with an average width of 34-36 nm. The resulting solvent-free liquid crystal exhibited transparent and viscous liquid-like fluidity, as well as a bright birefringence between the crossed polarizers at room temperature. In our findings, the stiff core provided crystal-like ordering, whereas the soft shells induced the high mobility of the TCNCs as a result of the increased fractional free volume, as shown by positron annihilation lifetime spectra. The unique flowability enables the possibility of multi-responsiveness to temperature, deformation, and alternating electric fields. In addition, the thermo-responsiveness can be regulated by tailoring the canopy. This work provides a novel strategy for the conversion of solid nanocellulose into a solvent-free nanoscale liquid crystal, which is promising for use as a responsive optical material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy