SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Way Danielle A) srt2:(2018)"

Sökning: WFRF:(Way Danielle A) > (2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Couvreur, Valentin, et al. (författare)
  • Water transport through tall trees : A vertically explicit, analytical model of xylem hydraulic conductance in stems
  • 2018
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 41:8, s. 1821-1839
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from non-linear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits.
  •  
2.
  • Kurepin, Leonid V., et al. (författare)
  • Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature
  • 2018
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 41:6, s. 1331-1345
  • Tidskriftsartikel (refereegranskat)abstract
    • High latitude forests will experience large changes in temperature and CO2 concentrations this century. We evaluated the effects of future climate conditions on 2 dominant boreal tree species, Pinus sylvestris L. and Picea abies (L.) H. Karst, exposing seedlings to 3 seasons of ambient (430 ppm) or elevated CO2 (750 ppm) and ambient temperatures, a + 4 degrees C warming or a + 8 degrees C warming. Pinus sylvestris responded positively to warming: seedlings developed a larger canopy, maintained high net CO2 assimilation rates (Anet), and acclimated dark respiration (Rdark). In contrast, carbon fluxes in Picea abies were negatively impacted by warming: maximum rates of Anet decreased, electron transport was redirected to alternative electron acceptors, and thermal acclimation of Rdark was weak. Elevated CO2 tended to exacerbate these effects in warm-grown Picea abies, and by the end of the experiment Picea abies from the +8 degrees C, high CO2 treatment produced fewer buds than they had 3 years earlier. Treatments had little effect on leaf and wood anatomy. Our results highlight that species within the same plant functional type may show opposite responses to warming and imply that Picea abies may be particularly vulnerable to warming due to low plasticity in photosynthetic and respiratory metabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy