SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Way Danielle A) srt2:(2019)"

Sökning: WFRF:(Way Danielle A) > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumarathunge, Dushan P., et al. (författare)
  • Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale
  • 2019
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 222:2, s. 768-784
  • Tidskriftsartikel (refereegranskat)abstract
    • The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively.The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin.We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.
  •  
2.
  • Vico, Giulia, et al. (författare)
  • Can leaf net photosynthesis acclimate to rising and more variable temperatures?
  • 2019
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 42:6, s. 1913-1928
  • Tidskriftsartikel (refereegranskat)abstract
    • Under future climates, leaf temperature (T-l) will be higher and more variable. This will affect plant carbon (C) balance because photosynthesis and respiration both respond to short-term (subdaily) fluctuations in T-l and acclimate in the longer term (days to months). This study asks the question: To what extent can the potential and speed of photosynthetic acclimation buffer leaf C gain from rising and increasing variable T-l? We quantified how increases in the mean and variability of growth temperature affect leaf performance (mean net CO2 assimilation rates, A(net); its variability; and time under near-optimal photosynthetic conditions), as mediated by thermal acclimation. To this aim, the probability distribution of A(net) was obtained by combining a probabilistic description of short- and long-term changes in T-l with data on A(net) responses to these changes, encompassing 75 genera and 111 species, including both C3 and C4 species. Our results show that (a) expected increases in T-l variability will decrease mean A(net) and increase its variability, whereas the effects of higher mean T-l depend on species and initial T-l, and (b) acclimation reduces the effects of leaf warming, maintaining A(net) at >80% of its maximum under most thermal regimes.
  •  
3.
  • Zhang, Quan, et al. (författare)
  • Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit
  • 2019
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 14:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated vapor pressure deficit (VPD) due to drought and warming is well-known to limit canopy stomatal and surface conductance, but the impacts of elevated VPD on ecosystem gross primary productivity (GPP) are less clear. The intrinsic water use efficiency (iWUE), defined as the ratio of carbon (C) assimilation to stomatal conductance, links vegetation C gain and water loss and is a key determinant of how GPP will respond to climate change. While it is well-established that rising atmospheric CO2 increases ecosystem iWUE, historic and future increases in VPD caused by climate change and drought are often neglected when considering trends in ecosystem iWUE. Here, we synthesize long-term observations of C and water fluxes from 28 North American FLUXNET sites, spanning eight vegetation types, to demonstrate that ecosystem iWUE increases consistently with rising VPD regardless of changes in soil moisture. Another way to interpret this result is that GPP decreases less than surface conductance with increasing VPD. We also project how rising VPD will impact iWUE into the future. Results vary substantially from one site to the next; in a majority of sites, future increases in VPD (RCP 8.5, highest emission scenario) are projected to increase iWUE by 5%-15% by 2050, and by 10%-35% by the end of the century. The increases in VPD owing to elevated global temperatures could be responsible for a 0.13% year(-1) increase in ecosystem iWUE in the future. Our results highlight the importance of considering VPD impacts on iWUE independently of CO2 impacts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy