SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Way Michael J.) srt2:(2015-2019)"

Sökning: WFRF:(Way Michael J.) > (2015-2019)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Li-San, et al. (författare)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
2.
  • Andrews, David J., et al. (författare)
  • Plasma observations during the Mars atmospheric "plume" event of March-April 2012
  • 2016
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 121:4, s. 3139-3154
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial analyses and conclusions from plasma observations made during the reported "Mars plume event" of March-April 2012. During this period, multiple independent amateur observers detected a localized, high-altitude "plume" over the Martian dawn terminator, the cause of which remains to be explained. The estimated brightness of the plume exceeds that expected for auroral emissions, and its projected altitude greatly exceeds that at which clouds are expected to form. We report on in situ measurements of ionospheric plasma density and solar wind parameters throughout this interval made by Mars Express, obtained over the same surface region but at the opposing terminator. Measurements in the ionosphere at the corresponding location frequently show a disturbed structure, though this is not atypical for such regions with intense crustal magnetic fields. We tentatively conclude that the formation and/or transport of this plume to the altitudes where it was observed could be due in part to the result of a large interplanetary coronal mass ejection (ICME) encountering the Martian system. Interestingly, we note that the only similar plume detection in May 1997 may also have been associated with a large ICME impact at Mars.
  •  
3.
  • Del Genio, Anthony D., et al. (författare)
  • Climates of Warm Earth-like Planets. III. Fractional Habitability from a Water Cycle Perspective
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 887:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The habitable fraction of a planet's surface is important for the detectability of surface biosignatures. The extent and distribution of habitable areas are influenced by external parameters that control the planet's climate, atmospheric circulation, and hydrological cycle. We explore these issues using the ROCKE-3D general circulation model, focusing on terrestrial water fluxes and thus the potential for the existence of complex life on land. Habitability is examined as a function of insolation and planet rotation for an Earth-like world with zero obliquity and eccentricity orbiting the Sun. We assess fractional habitability using an aridity index that measures the net supply of water to the land. Earth-like planets become "superhabitable" (a larger habitable surface area than Earth) as insolation and day-length increase because their climates become more equable, reminiscent of past warm periods on Earth when complex life was abundant and widespread. The most slowly rotating, most highly irradiated planets, though, occupy a hydrological regime unlike any on Earth, with extremely warm, humid conditions at high latitudes but little rain and subsurface water storage. Clouds increasingly obscure the surface as insolation increases, but visibility improves for modest increases in rotation period. Thus, moderately slowly rotating rocky planets with insolation near or somewhat greater than modern Earth's appear to be promising targets for surface characterization by a future direct imaging mission.
  •  
4.
  • Kumarathunge, Dushan P., et al. (författare)
  • Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale
  • 2019
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 222:2, s. 768-784
  • Tidskriftsartikel (refereegranskat)abstract
    • The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively.The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin.We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.
  •  
5.
  • Green, J. A. Mattias, et al. (författare)
  • Consequences of Tidal Dissipation in a Putative Venusian Ocean
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : IOP PUBLISHING LTD. - 2041-8205 .- 2041-8213. ; 876:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The solar tide in an ancient Venusian ocean is simulated using a dedicated numerical tidal model. Simulations with varying ocean depth and rotational periods ranging from -243 to 64 sidereal Earth days are used to calculate the tidal dissipation rates and associated tidal torque. The results show that the tidal dissipation could have varied by more than 5 orders of magnitude, from 0.001 to 780 GW, depending on rotational period and ocean depth. The associated tidal torque is about 2 orders of magnitude below the present day Venusian atmospheric torque, and could change the Venusian daylength by up to 72 days per million years depending on rotation rate. Consequently, an ocean tide on ancient Venus could have had significant effects on the rotational history of the planet. These calculations have implications for the rotational periods of similarly close-in exoplanetary worlds and the location of the inner edge of the liquid water habitable zone.
  •  
6.
  • Aleinov, I, et al. (författare)
  • Modeling a Transient Secondary Paleolunar Atmosphere : 3-D Simulations and Analysis
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 46:10, s. 5107-5116
  • Tidskriftsartikel (refereegranskat)abstract
    • The lunar history of water deposition, loss, and transport postaccretion has become an important consideration in relation to the possibility of a human outpost on the Moon. Very recent work has shown that a secondary primordial atmosphere of up to 10 mbar could have been emplaced similar to 3.5 x 10(9) years ago due to volcanic outgassing from the maria. Using a zero-dimensional chemistry model, we demonstrate the temperature dependence of the resulting major atmospheric components (CO or CO2). We use a three-dimensional general circulation model to test the viability of such an atmosphere and derive its climatological characteristics. Based on these results, we then conjecture on its capability to transport volatiles outgassed from the maria to the permanently shadowed regions at the poles. Our preliminary results demonstrate that atmospheres as low as 1 mbar are viable and that permanent cold trapping of volatiles is only possible at the poles.
  •  
7.
  • Bergvall, Nils, et al. (författare)
  • Local starburst galaxies and their descendants Statistics from the Sloan Digital Sky Survey
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Despite strong interest in the starburst phenomenon in extragalactic astronomy, the concept remains ill-defined. Here we use a strict definition of starburst to examine the statistical properties of starburst galaxies in the local universe. We also seek to establish links between starburst galaxies, post-starburst (hereafter postburst) galaxies, and active galaxies.Methods. Data were selected from the Sloan Digital Sky Survey DR7. We applied a novel method of treating dust attenuation and derive star formation rates, ages, and stellar masses assuming a two-component stellar population model. Dynamical masses are calculated from the width of the H alpha line. These masses agree excellently with the photometric masses. The mass (gas + stars) range is similar to 10(9)-10(11.5) M-circle dot. As a selection criterion for starburst galaxies, we use, the birthrate parameter, b = SFR/< SFR >, requiring that b >= 3. For postburst galaxies, we use, the equivalent width of H delta in absorption with the criterion EWH delta,abs >= 6 angstrom.Results. We find that only 1% of star-forming galaxies are starburst galaxies. They contribute 3 6% to the stellar production and are therefore unimportant for the local star formation activity. The median starburst age is 70 Myr roughly independent of mass, indicating that star formation is mainly regulated by local feedback processes. The b-parameter strongly depends on burst age. Values close to b = 60 are found at ages similar to 10 Myr, while almost no starbursts are found at ages >1 Gyr. The median baryonic burst mass fraction of sub-L* galaxies is 5% and decreases slowly towards high masses. The median mass fraction of the recent burst in the postburst sample is 5-10%. A smaller fraction of the postburst galaxies, however, originates in non-bursting galaxies. The age-mass distribution of the postburst progenitors (with mass fractions >3%) is bimodal with a break at log M (M-circle dot) similar to 10.6, above which the ages are doubled. The starburst and postburst luminosity functions (LFs) follow each other closely until M-r similar to -21, when active galactic nuclei (AGNs) begin to dominate. The postburst LF continues to follow the AGN LF, while starbursts become less significant. This suggests that the number of luminous starbursts is underestimated by about one dex at high luminosities, because of having large amounts of dust and/or being outshone by an AGN. It also indicates that the starburst phase preceded the AGN phase. Finally, we look at the conditions for global gas outflow caused by stellar feedback and find that massive starburst galaxies are susceptible to such outflows.
  •  
8.
  • Colose, Christopher M., et al. (författare)
  • Enhanced Habitability on High Obliquity Bodies near the Outer Edge of the Habitable Zone of Sun-like Stars
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 884:2
  • Tidskriftsartikel (refereegranskat)abstract
    • High obliquity planets represent potentially extreme limits of terrestrial climate, as they exhibit large seasonality, a reversed annual-mean pole-to-equator gradient of stellar heating, and novel cryospheres. A suite of 3D global climate model simulations is performed for low and high obliquity planets with various stellar fluxes, CO2 concentrations, and initial conditions to explore the propensity for high obliquity climates to undergo global glaciation. We also simulate planets with thick CO2 or H-2 atmospheres, such as those expected to develop near or beyond the outer edge of the habitable zone. We show that high obliquity planets are hotter than their low obliquity counterparts due to ice-albedo feedbacks for cold climates, and water vapor in warm climates. We suggest that the water vapor greenhouse trapping is greater on high obliquity bodies for a given global-mean temperature due to the different dynamical regimes that occur between the two states. While equatorial ice belts are stable at high obliquity in some climate regimes, it is substantially harder to achieve global glaciation than for a low obliquity planet. Temperate polar conditions can be present at high obliquity at forcings for which low obliquity planets would be in a hard snowball state. Furthermore, open ocean can persist even in the winter hemisphere and when global-mean temperatures are well below freezing. However, the influence of obliquity diminishes for dense atmospheres, in agreement with calculations from 1D energy balance models.
  •  
9.
  • Georgakarakos, Nikolaos, et al. (författare)
  • Long-term evolution of planetary systems with a terrestrial planet and a giant planet
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 461:2, s. 1512-1528
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the long-term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders, and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion, and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the time-scales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.
  •  
10.
  • Kane, Stephen R., et al. (författare)
  • Climate Modeling of a Potential ExoVenus
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 869:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The planetary mass and radius sensitivity of exoplanet discovery capabilities has reached into the terrestrial regime. The focus of such investigations is to search within the Habitable Zone where a modern Earth-like atmosphere may be a viable comparison. However, the detection bias of the transit and radial velocity methods lies close to the host star where the received flux at the planet may push the atmosphere into a runaway greenhouse state. One such exoplanet discovery, Kepler-1649b, receives a similar flux from its star as modern Venus does from the Sun, and so was categorized as a possible exo Venus. Here we discuss the planetary parameters of Kepler-1649b in relation to Venus to establish its potential as a Venus analog. We utilize the general circulation model ROCKE-3D to simulate the evolution of the surface temperature of Kepler-1649b under various assumptions, including relative atmospheric abundances. We show that in all our simulations the atmospheric model rapidly diverges from temperate surface conditions toward a runaway greenhouse with rapidly escalating surface temperatures. We calculate transmission spectra for the evolved atmosphere and discuss these spectra within the context of the James Webb Space Telescope Near-Infrared Spectrograph capabilities. We thus demonstrate the detectability of the key atmospheric signatures of possible runaway greenhouse transition states and outline the future prospects of characterizing potential Venus analogs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy