SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wedell A) srt2:(2015-2019)"

Sökning: WFRF:(Wedell A) > (2015-2019)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Nilsson, D., et al. (författare)
  • From cytogenetics to cytogenomics : whole genome sequencing as a comprehensive genetic test in rare disease diagnostics
  • 2019
  • Ingår i: European Journal of Human Genetics. - : Springer Nature. - 1018-4813 .- 1476-5438. ; 27, s. 1666-1667
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Rare genetic diseases are caused by different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements. Recent data indicates that whole genome sequencing (WGS) may be used as a comprehensive test to identify multiple types of pathologic genetic aberrations in a single analysis.We present FindSV, a bioinformatic pipeline for detection of balanced (inversions and translocations) and unbalanced (deletions and duplications) structural variants (SVs). First, FindSV was tested on 106 validated deletions and duplications with a median size of 850 kb (min: 511 bp, max: 155 Mb). All variants were detected. Second, we demonstrated the clinical utility in 138 monogenic WGS panels. SV analysis yielded 11 diagnostic findings (8%). Remarkably, a complex structural rearrangement involving two clustered deletions disrupting SCN1A, SCN2A, and SCN3A was identified in a three months old girl with epileptic encephalopathy. Finally, 100 consecutive samples referred for clinical microarray were also analyzed by WGS. The WGS data was screened for large (>2 kbp) SVs genome wide, processed for visualization in our clinical routine arrayCGH workflow with the newly developed tool vcf2cytosure, and for exonic SVs and SNVs in a panel of 700 genes linked to intellectual disability. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. The diagnostic rate (29%) was doubled compared to clinical microarray (12%).In conclusion, using WGS we have detected a wide range of structural variation with high accuracy, confirming it a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
  •  
7.
  •  
8.
  •  
9.
  • Siibak, Triinu, et al. (författare)
  • A multi-systemic mitochondrial disorder due to a dominant p.Y955H disease variant in DNA polymerase gamma
  • 2017
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 26:13, s. 2515-2525
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the mitochondrial DNA polymerase, POLG, are associated with a variety of clinical presentations, ranging from early onset fatal brain disease in Alpers syndrome to chronic progressive external ophthalmoplegia. The majority of mutations are linked with disturbances of mitochondrial DNA (mtDNA) integrity and maintenance. On a molecular level, depending on their location within the enzyme, mutations either lead to mtDNA depletion or the accumulation of multiple mtDNA deletions, and in some cases these molecular changes can be correlated to the clinical presentation. We identified a patient with a dominant p.Y955H mutation in POLG, presenting with a severe, early-onset multi-systemic mitochondrial disease with bilateral sensorineural hearing loss, cataract, myopathy, and liver failure. Using a combination of disease models of Drosophila melanogaster and in vitro biochemistry analysis, we compare the molecular consequences of the p.Y955H mutation to the well-documented p.Y955C mutation. We demonstrate that both mutations affect mtDNA replication and display a dominant negative effect, with the p.Y955H allele resulting in a more severe polymerase dysfunction.
  •  
10.
  • Alhusani, A, et al. (författare)
  • Adenosine Kinase Deficiency: Report and Review
  • 2019
  • Ingår i: Neuropediatrics. - : Georg Thieme Verlag KG. - 1439-1899 .- 0174-304X. ; 50:1, s. 46-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine kinase (ADK) deficiency (OMIM [online mendelian inheritance in man]: 614300) is an autosomal recessive disorder of adenosine and methionine metabolism, with a unique clinical phenotype, mainly involving the central nervous system and dysmorphic features. Patients usually present early in life with sepsis-like symptoms, respiratory difficulties, and neonatal jaundice. Subsequently, patients demonstrate hypotonia and global developmental delay. Biochemically, methionine is elevated with normal homocysteine levels and the diagnosis is confirmed through molecular analysis of the ADK gene. There is no curative treatment; however, a methionine-restricted diet has been tried with variable outcomes. Herein, we report a 4-year-old Saudi female with global developmental delay, hypotonia, and dysmorphic features. Interestingly, she has a tall stature, developmental dysplasia of the hip, optic nerve gliosis, and tigroid fundus. We found a mutation not reported previously and we compared the current case with previously reported cases. We alert clinicians to consider ADK deficiency in any neonate presenting with global developmental delay, hypotonia, dysmorphic features, and high methionine levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy