SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wehner W.) srt2:(2005-2009)"

Sökning: WFRF:(Wehner W.) > (2005-2009)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Achtert, Peggy, 1982-, et al. (författare)
  • Hygroscopic growth of tropospheric particle number size distributions over the North China Plain
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. D00G07-
  • Tidskriftsartikel (refereegranskat)abstract
    • The hygroscopic growth of atmospheric submicrometer particle size distributions (diameter D-p ranging from 22 to 900 nm) was studied at a rural/suburban site in the North China Plain within the framework of the international Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) research project. The goal was to characterize the regional aerosol in the polluted northeastern plain in China. Size descriptive hygroscopic growth factors (DHGFs) were determined as a function of relative humidity (RH) by relating the particle number size distribution at a dry condition ( 100 nm), the DHGF are substantially higher than in the Aitken particle mode (D-p < 100 nm) as a result of different chemical composition. The size-dependent behavior of the DHGF highlights the relevance of particulate sulfate production over the North China Plain, accomplished by secondary formation from the gas phase and, potentially, liquid phase processes in convective clouds. Furthermore, all results concerning the DHGF show a significant dependency on meteorological air masses. The hygroscopic growth of accumulation mode particles correlates significantly with the PM1-mass fraction of sulfate ions determined by chemical analysis. Finally, this investigation provides a parameterization of the hygroscopic growth of 250-nm particles, which might be useful when predicting visibility and radiative forcing and performing atmospheric aerosol model validations.
  •  
2.
  •  
3.
  • Laj, P., et al. (författare)
  • Measuring Atmospheric Composition Change
  • 2009
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1873-2844 .- 1352-2310. ; 43:33, s. 5351-5414
  • Tidskriftsartikel (refereegranskat)abstract
    • Scientific findings from the last decades have clearly highlighted the need for a more comprehensive approach to atmospheric change processes. In fact, observation of atmospheric composition variables has been an important activity of atmospheric research that has developed instrumental tools (advanced analytical techniques) and platforms (instrumented passenger aircrafts, ground-based in-situ and remote sensing stations, earth observation satellite instruments) providing essential information on the composition of the atmosphere. The variability of the atmospheric system and the extreme complexity of the atmospheric cycles for short-lived gaseous and aerosol species have led to the development of complex models to interpret observations, test our theoretical understanding of atmospheric chemistry and predict future atmospheric composition. The validation of numerical models requires accurate information concerning the variability of atmospheric composition for targeted species via comparison with observations and measurements. In this paper, we provide an overview of recent advances in instrumentation and methodologies for measuring atmospheric composition changes from space, aircraft and the surface as well as recent improvements in laboratory techniques that permitted scientific advance in the field of atmospheric chemistry. Emphasis is given to the most promising and innovative technologies that will become operational in the near future to improve knowledge of atmospheric composition. Our current observation capacity, however, is not satisfactory to understand and predict future atmospheric composition changes, in relation to predicted climate warming. Based on the limitation of the current European observing system, we address the major gaps in a second part of the paper to explain why further developments in current observation strategies are still needed to strengthen and optimise an observing system not only capable of responding to the requirements of atmospheric services but also to newly open scientific questions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy