SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wei Haiyan) srt2:(2020-2024)"

Sökning: WFRF:(Wei Haiyan) > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nie, Wei, et al. (författare)
  • NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere
  • 2023
  • Ingår i: Nature Communications. - Malmö : IVL Svenska Miljöinstitutet AB. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO2) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 – 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization.These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO2-NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the preindustrial atmosphere, pristine areas, and the upper boundary layer.
  •  
2.
  • Zhang, Yanan, et al. (författare)
  • Identifying discriminative features for diagnosis of Kashin-Beck disease among adolescents
  • 2021
  • Ingår i: BMC Musculoskeletal Disorders. - : BioMed Central. - 1471-2474. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Diagnosing Kashin-Beck disease (KBD) involves damages to multiple joints and carries variable clinical symptoms, posing great challenge to the diagnosis of KBD for clinical practitioners. However, it is still unclear which clinical features of KBD are more informative for the diagnosis of Kashin-Beck disease among adolescent.METHODS: We first manually extracted 26 possible features including clinical manifestations, and pathological changes of X-ray images from 400 KBD and 400 non-KBD adolescents. With such features, we performed four classification methods, i.e., random forest algorithms (RFA), artificial neural networks (ANNs), support vector machines (SVMs) and linear regression (LR) with four feature selection methods, i.e., RFA, minimum redundancy maximum relevance (mRMR), support vector machine recursive feature elimination (SVM-RFE) and Relief. The performance of diagnosis of KBD with respect to different classification models were evaluated by sensitivity, specificity, accuracy, and the area under the receiver operating characteristic (ROC) curve (AUC).RESULTS: Our results demonstrated that the 10 out of 26 discriminative features were displayed more powerful performance, regardless of the chosen of classification models and feature selection methods. These ten discriminative features were distal end of phalanges alterations, metaphysis alterations and carpals alterations and clinical manifestations of ankle joint movement limitation, enlarged finger joints, flexion of the distal part of fingers, elbow joint movement limitation, squatting limitation, deformed finger joints, wrist joint movement limitation.CONCLUSIONS: The selected ten discriminative features could provide a fast, effective diagnostic standard for KBD adolescents.
  •  
3.
  • Li, Constance H., et al. (författare)
  • Sex differences in oncogenic mutational processes
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.
  •  
4.
  • Li, Haiyan, et al. (författare)
  • Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides
  • 2022
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 15:6, s. 1811-1827
  • Tidskriftsartikel (refereegranskat)abstract
    • Proton transfer reaction (PTR) is a commonly applied ionization technique for mass spectrometers, in which hydronium ions (H3O+) transfer a proton to analytes with higher proton affinities than the water molecule. This method has most commonly been used to quantify volatile hydrocarbons, but later-generation PTR instruments have been designed for better throughput of less volatile species, allowing detection of more functionalized molecules as well. For example, the recently developed Vocus PTR time-of-flight mass spectrometer (PTR-TOF) has been shown to agree well with an iodide-adduct-based chemical ionization mass spectrometer (CIMS) for products with 3-5 O atoms from oxidation of monoterpenes (C10H16). However, while several different types of CIMS instruments (including those using iodide) detect abundant signals also at dimeric species, believed to be primarily ROOR peroxides, no such signals have been observed in the Vocus PTR even though these compounds fulfil the condition of having higher proton affinity than water. More traditional PTR instruments have been limited to volatile molecules as the inlets have not been designed for transmission of easily condensable species. Some newer instruments, like the Vocus PTR, have overcome this limitation but are still not able to detect the full range of functionalized products, suggesting that other limitations need to be considered. One such limitation, well-documented in PTR literature, is the tendency of protonation to lead to fragmentation of some analytes. In this work, we evaluate the potential for PTR to detect dimers and the most oxygenated compounds as these have been shown to be crucial for forming atmospheric aerosol particles. We studied the detection of dimers using a Vocus PTR-TOF in laboratory experiments, as well as through quantum chemical calculations. Only noisy signals of potential dimers were observed during experiments on the ozonolysis of the monoterpene alpha-pinene, while a few small signals of dimeric compounds were detected during the ozonolysis of cyclohexene. During the latter experiments, we also tested varying the pressures and electric fields in the ionization region of the Vocus PTR-TOF, finding that only small improvements were possible in the relative dimer contributions. Calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation. With the inclusion of additional energy from the ion-molecule collisions driven by the electric fields in the ionization source, computational results suggest substantial or nearly complete fragmentation of dimers. Our study thus suggests that while the improved versions of PTR-based mass spectrometers are very powerful tools for measuring hydrocarbons and their moderately oxidized products, other types of CIMS are likely more suitable for the detection of ROOR and ROOH species.
  •  
5.
  • Rusli, Andri, et al. (författare)
  • Eco-Friendly fabrication of nanoplastic particles and fibrils using polymer blends as templates
  • 2024
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 495
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastic pollution poses a critical global environmental challenge, and within this context, nanoplastics (NPs), the smallest plastic fragments, remain poorly understood. The progress in studying NP toxicity and developing analytical methods highly depends on access to well-defined NP materials. Herein, a straightforward and ecofriendly method for fabricating NP particles and fibrils using polymer blends as templates is presented. The process began with blending plastics with a water-soluble polymer (polyvinyl alcohol (PVA)), followed by the dissolution of the PVA matrix in water and the isolation of the NPs through a two-stage filtration process. NP materials from three widely used plastics, polyethylene, polypropylene, and polystyrene, were prepared, underscoring the versatility of this method. The resulting NPs were primarily submicron in size, and their size distribution was tuned by varying the blend ratio. Furthermore, by incorporating a stretch operation during the extrusion, the NP shape could be varied, enabling the fabrication of NP fibril materials. This method, which does not rely heavily on specialized equipment and avoids the use of harsh solvents, offers a viable and eco-friendly approach to fabricating NP samples suitable for a broad range of research applications.
  •  
6.
  • Rusli, Andri, et al. (författare)
  • Eco-Friendly fabrication of nanoplastic particles and fibrils using polymer blends as templates
  • 2024
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 495
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastic pollution poses a critical global environmental challenge, and within this context, nanoplastics (NPs), the smallest plastic fragments, remain poorly understood. The progress in studying NP toxicity and developing analytical methods highly depends on access to well-defined NP materials. Herein, a straightforward and eco-friendly method for fabricating NP particles and fibrils using polymer blends as templates is presented. The process began with blending plastics with a water-soluble polymer (polyvinyl alcohol (PVA)), followed by the dissolution of the PVA matrix in water and the isolation of the NPs through a two-stage filtration process. NP materials from three widely used plastics, polyethylene, polypropylene, and polystyrene, were prepared, underscoring the versatility of this method. The resulting NPs were primarily submicron in size, and their size distribution was tuned by varying the blend ratio. Furthermore, by incorporating a stretch operation during the extrusion, the NP shape could be varied, enabling the fabrication of NP fibril materials. This method, which does not rely heavily on specialized equipment and avoids the use of harsh solvents, offers a viable and eco-friendly approach to fabricating NP samples suitable for a broad range of research applications. 
  •  
7.
  • Sun, Jia, et al. (författare)
  • Optimizing LUT-based inversion of leaf chlorophyll from hyperspectral lidar data : Role of cost functions and regulation strategies
  • 2021
  • Ingår i: International Journal of Applied Earth Observation and Geoinformation. - : Elsevier BV. - 1569-8432. ; 105
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperspectral lidar (HSL) is a novel remote sensing technology that provides spectral information in addition to spatial features. This unprecedented data source leads to new possibilities for monitoring leaf biochemistry. Inversion of physically based radiative transfer models (RTMs) is a popular method for deriving leaf physiological traits due to its robustness and generalization capability. However, owing to the active nature of the HSL system, RTM inversion using the backscattered reflectance spectra may face new problems. Thus, optimization strategies for RTM inversion based on HSL measurements need to be studied. In this paper, several regulation strategies for lookup table (LUT)-based PROSPECT model inversions were explored for an HSL system. In particular, the influences of i) different cost functions, ii) multiple best solutions (1–1000), iii) different LUT sizes (100–100000), and iv) spectral domains for leaf chlorophyll (Chl) retrieval were analyzed. An evaluation against an experimental dataset of rice leaves indicated that i) least-squares estimation (LSE) provided better estimates than seven alternative cost functions when more than 200 solutions were taken; ii) accuracy in leaf Chl retrieval increased up until 200 solutions where after it stabilized; iii) the impact of LUT size became insignificant after 1000; and iv) the red edge was the spectral domain that had the largest impact on the inversion performance. The optimal performance of leaf Chl estimation reached R2 of 0.58 and RMSE of 0.69 between the z-scores from retrieved and measured leaf Chl. The practical application of combining RTM with HSL data will facilitate the detection of leaf-level biochemistry and advance research on terrestrial carbon cycle modeling.
  •  
8.
  • Sun, Xiaoyan, et al. (författare)
  • A cubic DNA nanocage probe for in situ analysis of miRNA-10b in tumor-derived extracellular vesicles
  • 2024
  • Ingår i: Chemical Communications. - 1364-548X. ; 60, s. 4777-4780
  • Tidskriftsartikel (refereegranskat)abstract
    • A cubic DNA nanocage probe is able to enter EVs derived from MDA-MB-231 cells and react with miRNA-10b. The probe-loaded EVs were employed to monitor the process of entry of miRNA-10b into MCF-10A cells, allowing visualization of EV-mediated intercellular communication of miRNA-10b between the cancer cells.
  •  
9.
  • Wei, Xin-Feng, et al. (författare)
  • Microplastics Originating from Polymer Blends : An Emerging Threat?
  • 2021
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:8, s. 4190-4193
  • Tidskriftsartikel (refereegranskat)abstract
    • No one can have missed the growing global environmental problems with plastics ending up as microplastics in food, water, and soil, and the associated effects on nature, wildlife, and humans. A hitherto not specifically investigated source of microplastics is polymer blends. A 1 g polymer blend can contain millions to billions of micrometer-sized species of the dispersed phase and therefore aging-induced fragmentation of the polymer blends can lead to the release of an enormous amount of microplastics. Especially if the stability of the dispersed material is higher than that of the surrounding matrix, the risk of microplastic migration is notable, for instance, if the matrix material is biodegradable and the dispersed material is not. The release can also be much faster if the matrix polymer is biodegradable. The purpose of writing this feature article is to arise public and academic attention to the large microplastic risk from polymer blends during their development, production, use, and waste handling.
  •  
10.
  • Wei, Xin-Feng, et al. (författare)
  • Risk for the release of an enormous amount of nanoplastics and microplastics from partially biodegradable polymer blends
  • 2022
  • Ingår i: Green Chemistry. - : Royal Society of Chemistry (RSC). - 1463-9262 .- 1463-9270. ; 24:22, s. 8742-8750
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoplastics and microplastics (NMPs) in natural environments are an emerging global concern and understanding their formation processes from macro-plastic items during degradation/weathering is critical for predicting their quantities and impacts in different ecological systems. Here, we show the risk of enormous emissions of NMPs from polymer blends, a source that has not been specifically studied, by taking immiscible (most common case) partially biodegradable polymer blends as an example. The blends have the common “sea-island” morphology, where the minor non-biodegradable polymer phase (polyethylene and polypropylene) is dispersed as NMP particles in the major continuous biodegradable matrix (poly(ϵ-caprolactone)). The dispersed NMP particles with spherical and rod-like shapes are gradually liberated and released to the surrounding aquatic environment during the biodegradation of the matrix polymer. Strikingly, the number of released NMPs from the blend is very high. The blend film surface erosion process, induced by enzymatic hydrolysis of the matrix, involving fragmentation, hole formation, and hole wall detachment, was systematically investigated to reveal the NMP release process. Our findings present direct evidence and detailed insights into the high risk of emissions of NMPs from partially biodegradable immiscible polymer blends with a widespread “sea-island” morphology. Efforts from authorities, developers, manufacturers, and the public are needed to avoid the use of non-biodegradable polymers in blends with biodegradable polymers. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy