SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Welsh Michael) srt2:(2010-2014)"

Sökning: WFRF:(Welsh Michael) > (2010-2014)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christoffersson, Gustav, et al. (författare)
  • Vascular adaptation to a dysfunctional endothelium as a consequence of Shb deficiency
  • 2012
  • Ingår i: Angiogenesis. - : Springer Science and Business Media LLC. - 0969-6970 .- 1573-7209. ; 15:3, s. 469-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular endothelial growth factor (VEGF)-A regulates angiogenesis, vascular morphology and permeability by signaling through its receptor VEGFR-2. The Shb adapter protein has previously been found to relay certain VEGFR-2 dependent signals and consequently vascular physiology and structure was assessed in Shb knockout mice. X-ray computed tomography of vessels larger than 24 mm diameter (micro-CT) after contrast injection revealed an increased frequency of 48-96 µm arterioles in the hindlimb calf muscle in Shb knockout mice. Intravital microscopy of the cremaster muscle demonstrated a less regular vasculature with fewer branch points and increased vessel tortuosity, changes that led to an increased blood flow velocity. Reduced in vivo angiogenesis was observed in Shb knockout MatrigelTM plugs. Unlike the wild-type situation, VEGF-A did not provoke a dissociation of VE-cadherin from adherens junctions in Shb knockout venules. The reduced angiogenesis and altered properties of junctions had consequences for two patho-physiological responses to arterial occlusion: vascular permeability was reduced in the Shb knockout cremaster muscle after ligation of one supplying artery and heat-induced blood flow determined by Laser-Doppler measurements was decreased in the hindlimb after ligation of the femoral artery. Consequently, the Shb knockout mouse exhibited structural and functional (angiogenesis and vascular permeability) vascular abnormalities that have implications for understanding the function of VEGF-A under physiological conditions.
  •  
2.
  • Claesson-Welsh, Lena, et al. (författare)
  • VEGFA and tumour angiogenesis
  • 2013
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 273:2, s. 114-127
  • Forskningsöversikt (refereegranskat)abstract
    • In this review we summarize the current understanding of signal transduction downstream of vascular endothelial growth factor A (VEGFA) and its receptor VEGFR2, and the relationship between these signal transduction pathways and the hallmark responses of VEGFA, angiogenesis and vascular permeability. These physiological responses involve a number of effectors, including extracellular signal-regulated kinases (ERKs), Src, phosphoinositide 3 kinase (PI3K)/Akt, focal adhesion kinase (FAK), Rho family GTPases, endothelial NO and p38 mitogen-activated protein kinase (MAPK). Several of these factors are involved in the regulation of both angiogenesis and vascular permeability. Tumour angiogenesis primarily relies on VEGFA-driven responses, which to a large extent result in a dysfunctional vasculature. The reason for this remains unclear, although it appears that certain aspects of the VEGFA-stimulated angiogenic milieu (high level of microvascular density and permeability) promote tumour expansion. The high degree of redundancy and complexity of VEGFA-driven tumour angiogenesis may explain why tumours commonly develop resistance to anti-angiogenic therapy targeting VEGFA signal transduction.
  •  
3.
  • Gustafsson, Karin, et al. (författare)
  • The Src homology-2 protein Shb modulates focal adhesion kinase signaling in a BCR-ABL myeloproliferative disorder causing accelerated progression of disease
  • 2014
  • Ingår i: Journal of Hematology & Oncology. - : Springer Science and Business Media LLC. - 1756-8722. ; 7:1, s. 45-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The Src homology-2 domain protein B (Shb) is an adapter protein operating downstream of several tyrosine kinase receptors and consequently Shb regulates various cellular responses. Absence of Shb was recently shown to reduce hematopoietic stem cell proliferation through activation of focal adhesion kinase (FAK) and thus we sought to investigate Shb's role in the progression of leukemia.METHODS: Wild type and Shb knockout bone marrow cells were transformed with a retroviral BCR-ABL construct and subsequently transplanted to wild type or Shb knockout recipients. Disease latency, bone marrow and peripheral blood cell characteristics, cytokine expression, signaling characteristics and colony formation were determined by flow cytometry, qPCR, western blotting and methylcellulose colony forming assays.RESULTS: It was observed that Shb knockout BCR-ABL-transformed bone marrow cells produced a disease with death occurring at earlier time points compared with corresponding wild type controls due to elevated proliferation of transformed bone marrow cells. Moreover, significantly elevated interleukin-6 and granulocyte colony-stimulation factor mRNA levels were observed in Shb knockout c-Kit + leukemic bone marrow cells providing a plausible explanation for the concurrent peripheral blood neutrophilia. Shb knockout leukemic bone marrow cells also showed increased ability to form colonies in methylcellulose devoid of cytokines that was dependent on the concomitantly observed increased activity of FAK. Transplanting BCR-ABL-transformed Shb knockout bone marrow cells to Shb knockout recipients revealed decreased disease latency without neutrophilia, thus implicating the importance of niche-derived cues for the increase of blood granulocytes.CONCLUSIONS: Absence of Shb accelerates disease progression by exerting dual roles in BCR-ABL-induced leukemia: increased cell expansion due to elevated FAK activity and neutrophilia in peripheral blood, the latter dependent on the genetic background of the leukemic niche.
  •  
4.
  •  
5.
  • Åkerblom, Björn, et al. (författare)
  • Heterogeneity among RIP-Tag2 insulinomas allows vascular endothelial growth factor-A independent tumor expansion as revealed by studies in Shb mutant mice : implications for tumor angiogenesis
  • 2012
  • Ingår i: Molecular Oncology. - : Wiley. - 1574-7891 .- 1878-0261. ; 6:3, s. 333-346
  • Tidskriftsartikel (refereegranskat)abstract
    • The Shb adapter protein is a signaling intermediate that operates downstream of vascular endothelial growth factor receptor-2 (VEGFR-2) in endothelial cells. The Shb knockout mouse displays a dysfunctional microvasculature and impaired growth of subcutaneously implanted tumor cells. We decided to investigate tumor growth and angiogenesis in the absence of Shb in an inheritable tumor model, the RIP-Tag2 mouse, which produces insulinomas in a manner highly dependent on de novo angiogenesis. We observed a reduced tumor incidence and burden in both RIP-Tag2 Shb-/- and RIP-Tag2 Shb+/- mice. This correlated with a reduced microvascular density, measured as percentage of insulinoma area positive for CD31 staining, and altered vascular morphology. However, treatment with a VEGF-A blocking antibody was without effect on the Shb mutant tumor volume whereas it significantly inhibited tumor volume in the wild-type mice, suggesting that in mice with reduced Shb expression tumor angiogenesis was primarily sustained by VEGF-A independent pathway(s). This notion was further substantiated by gene expression analysis of angiogenic markers showing reduced VEGF-A expression in Shb deficient tumors. Considerable heterogeneity with respect to the gene expression profiles of other angiogenic markers and the signal-transduction characteristics was observed between different tumors, suggesting that multiple “rescue” pathways could be operating. The numbers of invasive tumors or metastases were unchanged in the Shb mutant. It is concluded that the Shb mutant background reduces tumor frequency by chronically suppressing VEGF-A dependent angiogenesis. However, VEGF-A independent angiogenesis supports a significant degree of tumor expansion in Shbdeficient mice, indicating heterogeneity in the mechanisms by which tumor expansion is promoted. Interference with Shb signaling may provide novel means for future cancer therapy.
  •  
6.
  • Alenkvist, Ida, et al. (författare)
  • Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets
  • 2014
  • Ingår i: Journal of Endocrinology. - 0022-0795 .- 1479-6805. ; 223:3, s. 267-275
  • Tidskriftsartikel (refereegranskat)abstract
    • The Src homology-2 domain containing protein B (SHB) has previously been shown to function as a pleiotropic adapter protein, conveying signals from receptor tyrosine kinases to intracellular signaling intermediates. The overexpression of Shb in β-cells promotes β-cell proliferation by increased insulin receptor substrate (IRS) and focal adhesion kinase (FAK) activity, whereas Shb deficiency causes moderate glucose intolerance and impaired first-peak insulin secretion. Using an array of techniques, including live-cell imaging, patch-clamping, immunoblotting, and semi-quantitative PCR, we presently investigated the causes of the abnormal insulin secretory characteristics in Shb-knockout mice. Shb-knockout islets displayed an abnormal signaling signature with increased activities of FAK, IRS, and AKT. β-catenin protein expression was elevated and it showed increased nuclear localization. However, there were no major alterations in the gene expression of various proteins involved in the β-cell secretory machinery. Nor was Shb deficiency associated with changes in glucose-induced ATP generation or cytoplasmic Ca(2) (+) handling. In contrast, the glucose-induced rise in cAMP, known to be important for the insulin secretory response, was delayed in the Shb-knockout compared with WT control. Inhibition of FAK increased the submembrane cAMP concentration, implicating FAK activity in the regulation of insulin exocytosis. In conclusion, Shb deficiency causes a chronic increase in β-cell FAK activity that perturbs the normal insulin secretory characteristics of β-cells, suggesting multi-faceted effects of FAK on insulin secretion depending on the mechanism of FAK activation.
  •  
7.
  • Calounova, Gabriela, et al. (författare)
  • The Src homology 2 domain-containing adapter protein B (SHB) regulates mouse oocyte maturation
  • 2010
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:6, s. e11155-
  • Tidskriftsartikel (refereegranskat)abstract
    • SHB (Src homology 2 domain-containing adapter protein B) is involved in receptor tyrosine kinase signaling. Mice deficient in the Shb gene have been found to exhibit a transmission ratio distortion with respect to inheritance of the Shb null allele among offspring and this phenomenon was linked to female gamete production. Consequently, we postulated that Shb plays a role for oocyte biology and thus decided to investigate oocyte formation, meiotic maturation, and early embryo development in relation to absence of the Shb gene. Oogenesis was apparently accelerated judging from the stages of oocyte development on fetal day 18.5 and one week postnatally in Shb -/- mice; but in adulthood ovarian follicle maturation was impaired in these mice. Completion of meiosis I (first polar body extrusion) was less synchronized, with a fraction of oocytes showing premature polar body extrusion in the absence of Shb. In vitro fertilization of mature oocytes isolated from Shb +/+, +/- and -/- mice revealed impaired early embryo development in the -/- embryos. Moreover, the absence of Shb enhanced ERK (extracellular-signal regulated kinase) and RSK (ribosomal S6 kinase) signaling in oocytes and these effects were paralleled by an increased ribosomal protein S6 phosphorylation and activation. It is concluded that SHB regulates normal oocyte and follicle development and that perturbation of SHB signaling causes defective meiosis I and early embryo development.
  •  
8.
  •  
9.
  •  
10.
  • Geretti, Elena, et al. (författare)
  • A mutated soluble neuropilin-2 B domain antagonizes vascular endothelial growth factor bioactivity and inhibits tumor progression
  • 2010
  • Ingår i: Molecular Cancer Research. - 1541-7786 .- 1557-3125. ; 8:8, s. 1063-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropilins (NRP1 and NRP2) are coreceptors for vascular endothelial growth factor (VEGF) and mediate angiogenesis and tumor progression. VEGF binds to the NRP1 and NRP2 B domains. Previously, it was shown that mutagenesis of the soluble NRP2 B domain (MutB-NRP2) increased affinity to VEGF by 8-fold. Here, we show that MutB-NRP2 inhibited (125)I-VEGF binding to NRP1, NRP2, and VEGFR-2. It antagonized VEGF-induced VEGFR-2/NRP2 complex formation and inhibited VEGF-induced activation of AKT, a mediator of cell survival, without affecting activation of VEGFR-2. In three-dimensional embryoid bodies, a model of VEGF-induced angiogenesis, MutB-NRP2 inhibited VEGF-induced sprouting. When overexpressed in human melanoma cells, MutB-NRP2 inhibited tumor growth compared with control tumors. Avastin (bevacizumab), a monoclonal antibody to VEGF, inhibited VEGF interactions with VEGFR-2, but not with NRPs. The combination of MutB-NRP2 and Avastin resulted in an enhanced inhibition of human melanoma tumor growth compared with MutB-NRP2 treatment only or Avastin treatment only. In conclusion, these results indicate that MutB-NRP2 is a novel antagonist of VEGF bioactivity and tumor progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy