SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Welsh Nils) srt2:(2015-2019)"

Sökning: WFRF:(Welsh Nils) > (2015-2019)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anvari, Ebrahim, et al. (författare)
  • The H1-receptor antagonist cetirizine ameliorates high-fat diet-induced glucose intolerance in male C57BL/6 mice, but not diabetes outcome in female non-obese diabetic (NOD) mice
  • 2015
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 120:1, s. 40-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. It has been proposed that the histamine 1-receptor (H1-receptor) not only promotes allergic reactions, but also modulates innate immunity and autoimmune reactions. In line with this, we have recently reported that the H1-receptor antagonist cetirizine partially counteracts cytokine-induced beta-cell signaling and destruction. Therefore, the aim of this study was to determine whether cetirizine affects diabetes in NOD mice, a model for human type 1 diabetes, and glucose intolerance in high-fat diet C57BL/6 mice, a model for human glucose intolerance. Methods. Female NOD mice were treated with cetirizine in the drinking water (25 mg/kg body weight) from 9 until 30 weeks of age during which precipitation of diabetes was followed. Male C57BL/6 mice were given a high-fat diet from 5 weeks of age. When the mice were 12 weeks of age cetirizine was given for 2 weeks in the drinking water. The effects of cetirizine were analyzed by blood glucose determinations, glucose tolerance tests, and insulin sensitivity tests. Results. Cetirizine did not affect diabetes development in NOD mice. On the other hand, cetirizine treatment for 1 week protected against high-fat diet-induced hyperglycemia. The glucose tolerance after 2 weeks of cetirizine treatment was improved in high-fat diet mice. We observed no effect of cetirizine on the insulin sensitivity of high-fat diet mice. Conclusion. Our results suggest a protective effect of cetirizine against high-fat diet-induced beta-cell dysfunction, but not against autoimmune beta-cell destruction.
  •  
2.
  • Anvari, Ebrahim, et al. (författare)
  • The novel NADPH oxidase 4 inhibitor GLX351322 counteracts glucose intolerance in high-fat diet-treated C57BL/6 mice
  • 2015
  • Ingår i: Free radical research. - : Informa UK Limited. - 1071-5762 .- 1029-2470. ; 49:11, s. 1308-1318
  • Tidskriftsartikel (refereegranskat)abstract
    • In type 2 diabetes, it has been proposed that pancreatic beta-cell dysfunction is promoted by oxidative stress caused by NADPH oxidase (NOX) overactivity. Five different NOX enzymes (NOX1-5) have been characterized, among which NOX1 and NOX2 have been proposed to negatively affect beta-cells, but the putative role of NOX4 in type 2 diabetes-associated beta-cell dysfunction and glucose intolerance is largely unknown. Therefore, we presently investigated the importance of NOX4 for high-fat diet or HFD-induced glucose intolerance using male C57BL/6 mice using the new NOX4 inhibitor GLX351322, which has relative NOX4 selectivity over NOX2. In HFD-treated male C57BL/6 mice a two-week treatment with GLX351322 counteracted non-fasting hyperglycemia and impaired glucose tolerance. This effect occurred without any change in peripheral insulin sensitivity. To ascertain that NOX4 also plays a role for the function of human beta-cells, we observed that glucose- and sodium palmitate-induced insulin release from human islets in vitro was increased in response to NOX4 inhibitors. In long-term experiments (1-3 days), high-glucose-induced human islet cell reactive oxygen species (ROS) production and death were prevented by GLX351322. We propose that while short-term NOX4-generated ROS production is a physiological requirement for beta-cell function, persistent NOX4 activity, for example, during conditions of high-fat feeding, promotes ROS-mediated beta-cell dysfunction. Thus, selective NOX inhibition may be a therapeutic strategy in type 2 diabetes.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Fred, Rikard G., et al. (författare)
  • Imatinib mesylate stimulates low-density lipoprotein receptor-related protein 1-mediated ERK phosphorylation in insulin-producing cells
  • 2015
  • Ingår i: Clinical Science. - 0143-5221 .- 1470-8736. ; 128:1, s. 17-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic and multi-functional type I cell surface membrane protein, which is known to be phosphorylated by the activated platelet-derived growth factor receptor (PDGFR). The tyrosine kinase inhibitor imatinib, which inhibits PDGFR and c-Abl, and which has previously been reported to counteract beta-cell death and diabetes, has been suggested to reduce atherosclerosis by inhibiting PDGFR-induced LRP1 phosphorylation. The aim of the present study was to study LRP1 function in beta-cells and to what extent imatinib modulates LRP1 activity. LRP1 and c-Abl gene knockdown was performed by RNAi using rat INS-1 832/13 and human EndoC1-beta H1 cells. LRP1 was also antagonized by treatment with the antagonist low-density lipoprotein receptor-related protein associated protein 1 (LRPAP1). We have used PDGF-BB, a PDGFR agonist, and apolipoprotein E (ApoE), an LRP1 agonist, to stimulate the activities of PDGFR and LRP1 respectively. Knockdown or inhibition of LRP1 resulted in increased hydrogen peroxide (H2O2)(-) or cytokine-induced cell death, and glucose-induced insulin release was lowered in LRP1-silenced cells. These results indicate that LRP1 function is necessary for beta-cell function and that LRP1 is adversely affected by challenges to beta-cell health. PDGF-BB, or the combination of PDGF-BB+ApoE, induced phosphorylation of extracellular-signal-regulated kinase (ERK), Akt and LRP1. LRP1 silencing blocked this event. Imatinib blocked phosphorylation of LRP1 by PDGFR activation but induced phosphorylation of ERK. LRP1 silencing blocked imatinib-induced phosphorylation of ERK. Sunitinib also blocked LRP1 phosphorylation in response to PDGF-BB and induced phosphorylation of ERK, but this latter event was not affected by LRP1 knockdown. siRNA-mediated knockdown of the imatinib target c-Abl resulted in an increased ERK phosphorylation at basal conditions, with no further increase in response to imatinib. Imatinib-induced cell survival of tunicamycin-treated cells was partially mediated by ERK activation. We have concluded that imatinib promotes LRP1-dependent ERK activation, possibly via inhibition of c-Abl, and that this could contribute to the pro-survival effects of imatinib on beta-cells.
  •  
7.
  • Fred, Rikard G, et al. (författare)
  • PTB and TIAR binding to insulin mRNA 3'- and 5'UTRs; implications for insulin biosynthesis and messenger stability.
  • 2016
  • Ingår i: Heliyon. - : Elsevier BV. - 2405-8440. ; 2:9
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesInsulin expression is highly controlled on the posttranscriptional level. The RNA binding proteins (RBPs) responsible for this result are still largely unknown.Methods and resultsTo identify RBPs that bind to insulin mRNA we performed mass spectrometry analysis on proteins that bound synthetic oligonucloetides mimicing the 5′- and the 3′-untranslated regions (UTRs) of rat and human insulin mRNA in vitro. We observed that the RBPs heterogeneous nuclear ribonucleoprotein (hnRNP) U, polypyrimidine tract binding protein (PTB), hnRNP L and T-cell restricted intracellular antigen 1-related protein (TIA-1-related protein; TIAR) bind to insulin mRNA sequences, and that the in vitro binding affinity of these RBPs changed when INS-1 cells were exposed to glucose, 3-isobutyl-1-methylxanthine (IBMX) or nitric oxide. High glucose exposure resulted in a modest increase in PTB and TIAR binding to an insulin mRNA sequence. The inducer of nitrosative stress DETAnonoate increased markedly hnRNP U and TIAR mRNA binding. An increased PTB to TIAR binding ratio in vitro correlated with higher insulin mRNA levels and insulin biosynthesis rates in INS-1 cells. To further investigate the importance of RNA-binding proteins for insulin mRNA stability, we decreased INS-1 and EndoC-βH1 cell levels of PTB and TIAR by RNAi. In both cell lines, decreased levels of PTB resulted in lowered insulin mRNA levels while decreased levels of TIAR resulted in increased insulin mRNA levels. Thapsigargin-induced stress granule formation was associated with a redistribution of TIAR from the cytosol to stress granules.ConclusionsThese experiments indicate that alterations in insulin mRNA stability and translation correlate with differential RBP binding. We propose that the balance between PTB on one hand and TIAR on the other participates in the control of insulin mRNA stability and utilization for insulin biosynthesis.
  •  
8.
  • Fred, Rikard G., et al. (författare)
  • Role of the AMP kinase in cytokine-induced human EndoC-beta H1 cell death
  • 2015
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 414:C, s. 53-63
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present investigation was to delineate cytokine-induced signaling and death using the EndoC-beta H1 cells as a model for primary human beta-cells. The cytokines IL-1 beta and IFN-gamma induced a rapid and transient activation of NF-kappa B, STAT-1, ERK, JNK and eIF-2 alpha signaling. The EndoC-beta H1 cells died rapidly when exposed to IL-1 beta + IFN-gamma, and this occurred also in the presence of the actinomycin D. Inhibition of NF-kappa B and STAT-1 did not protect against cell death, nor did the cytokines activate iNOS expression. Instead, cytokines promoted a rapid decrease in EndoC-beta H1 cell respiration and ATP levels, and we observed protection by the AMPK activator AICAR against cytokine-induced cell death. It is concluded that EndoC-beta H1 cell death can be prevented by AMPK activation, which suggests a role for ATP depletion in cytokine-induced human beta-cell death.
  •  
9.
  • King, Aileen J. F., et al. (författare)
  • Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome
  • 2016
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 121:2, s. 140-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57BI/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57BI/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome.
  •  
10.
  • Krizhanovskii, Camilla, et al. (författare)
  • Addition of exogenous sodium palmitate increases the IAPP/insulin mRNA ratio via GPR40 in human EndoC-beta H1 cells
  • 2017
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 122:3, s. 149-159
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Enhanced IAPP production may contribute to islet amyloid formation in type 2 diabetes. The objective of this study was to determine the effects of the saturated fatty acid palmitate on IAPP levels in human beta-cells. Methods: EndoC-beta H1 cells and human islets were cultured in the presence of sodium palmitate. Effects on IAPP/insulin mRNA expression and secretion were determined using real-time qPCR/ELISA. Pharmacological activators and/or inhibitors and RNAi were used to determine the underlying mechanisms. Results: We observed that EndoC-beta H1 cells exposed to palmitate for 72 h displayed decreased expression of Pdx-1 and MafA and increased expression of thioredoxin-interacting protein (TXNIP), reduced insulin mRNA expression and glucose-induced insulin secretion, as well as increased IAPP mRNA expression and secretion. Further, these effects were independent of fatty acid oxidation, but abolished in response to GPR40 inhibition/downregulation. In human islets both a high glucose concentration and palmitate promoted increased IAPP mRNA levels, resulting in an augmented IAPP/insulin mRNA ratio. This was paralleled by elevated IAPP/insulin protein secretion and content ratios. Conclusions: Addition of exogenous palmitate to human beta-cells increased the IAPP/insulin expression ratio, an effect contributed to by activation of GPR40. These findings may be pertinent to our understanding of the islet amyloid formation process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy