SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wensing M.) srt2:(2020-2022)"

Sökning: WFRF:(Wensing M.) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Reimerdes, H., et al. (författare)
  • Overview of the TCV tokamak experimental programme
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
  •  
3.
  • Berrocal, E., et al. (författare)
  • Imaging atomizing sprays with high visibility using two-photon fluorescence laser sheet imaging
  • 2020
  • Ingår i: ICLASS 2018 - 14th International Conference on Liquid Atomization and Spray Systems.
  • Konferensbidrag (refereegranskat)abstract
    • Two-photon excitation laser induced fluorescence (2p-LIF) is used here for imaging through an optically dense spray system. The main advantage of the approach is that a low level of unwanted fluorescence signal originating from multiple-light scattering is generated. This leads to high visibility and image contrast even through scattering media, thus providing faithful descriptions of the imaged fluid structures. While 2p-LIF imaging is a well-known point measurement approach in the field of life science microscopy [1], it has, to the best of the authors' knowledge, never been tested for observing atomizing sprays. We take advantage of this process here, at a macroscopic scale, by imaging a light sheet of ~1cm height. To generate enough 2p-LIF signal at such large scale and for single-shot detection, ultra-short laser pulses of high pulse energy are needed. This is obtained by using a laser system providing 25 fs pulses centered at 800 nm wavelength and having 2.5 mJ pulse energy. The technique is demonstrated by imaging a single spray plume from a 6 hole commercial Gasoline Direct Injection (GDI) system running at 200 bar injection pressure. The injected liquid is water mixed with Fluorescein dye. We show the important image contrast improvement of 2p-LIF light sheet imaging in comparison with the traditional shadowgraphy, laser sheet Mie scattering and back-fluorescence imaging. The proposed approach is very promising as a future imaging tool for detailed analysis of the dynamics of atomizing spray in the spray formation region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy