SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Werpers Jonatan) srt2:(2021)"

Sökning: WFRF:(Werpers Jonatan) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ljungberg Rydin, Ylva, 1992-, et al. (författare)
  • High-order finite difference method for the Schrödinger equation on deforming domains
  • 2021
  • Ingår i: Journal of Computational Physics. - : Elsevier. - 0021-9991 .- 1090-2716. ; 443
  • Tidskriftsartikel (refereegranskat)abstract
    • A high-order finite difference discretisation of the Schrödinger equation on do- mains that deform in time is presented. For the domain deformation, a time- dependent coordinate transformation is used. The utilisation of summation- by-parts finite difference operators, combined with boundary conditions im- posed weakly by a penalty technique, leads to a provably stable scheme. The convergence properties of the scheme are verified by numerical computations. The capabilities of the numerical scheme is demonstrated by simulations of Berry phases in deforming quantum billiards.
  •  
2.
  • Werpers, Jonatan (författare)
  • Finite Difference Methods for Wave Dominated Problems
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Wave models are an important class of models that describe many diverse phenomena such as sound waves, fluid flow, and quantum mechanics. These models are often described mathematically as partial differential equations (PDE). Often these equations do not admit solutions on closed-form and then the only option to study them is numerical methods. These numerical methods must be robust, accurate, and efficient. For spatial discretizations, it is known that higher-order finite-difference methods are efficient, but they often complicate achieving robustness.In this thesis, we focus on high-order finite-difference methods for solving these wave-dominated PDEs. We use the summation-by-parts (SBP) framework together with simultaneous approximation terms (SAT) for the boundary conditions to prove stability and robustness. This results in efficient numerical methods that are known to converge to the correct solution.The work in this thesis aims to broaden the scope of these finite-difference methods in different ways. In Paper I and III the framework is extended to two dispersive wave equations, solving challenges arising in both the spatial discretization as well as the time integration. The geometric flexibility of the methods is enhanced for the linear Euler equation and the Schrödinger equation in Paper II and VI by studying both stationary and time-dependent curvilinear grids. Paper IV shows how to use the framework to combine two models to describe and simulate a coupled physical system. In paper V we address a deficiency in the methodology around non-matching grids, showing a way to improve the accuracy and get faster convergence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy