SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wesson R.) srt2:(2020-2024)"

Sökning: WFRF:(Wesson R.) > (2020-2024)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Marco, O., et al. (författare)
  • The messy death of a multiple star system and the resulting planetary nebula as observed by JWST
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:12, s. 1421-1432
  • Tidskriftsartikel (refereegranskat)abstract
    • Planetary nebulae—the ejected envelopes of red giant stars—provide us with a history of the last, mass-losing phases of 90% of stars initially more massive than the Sun. Here we analyse images of the planetary nebula NGC 3132 from the James Webb Space Telescope (JWST) Early Release Observations. A structured, extended hydrogen halo surrounding an ionized central bubble is imprinted with spiral structures, probably shaped by a low-mass companion orbiting the central star at about 40–60 au. The images also reveal a mid-infrared excess at the central star, interpreted as a dusty disk, which is indicative of an interaction with another closer companion. Including the previously known A-type visual companion, the progenitor of the NGC 3132 planetary nebula must have been at least a stellar quartet. The JWST images allow us to generate a model of the illumination, ionization and hydrodynamics of the molecular halo, demonstrating the power of JWST to investigate complex stellar outflows. Furthermore, new measurements of the A-type visual companion allow us to derive the value for the mass of the progenitor of a central star with excellent precision: 2.86 ± 0.06 M⊙. These results serve as pathfinders for future JWST observations of planetary nebulae, providing unique insight into fundamental astrophysical processes including colliding winds and binary star interactions, with implications for supernovae and gravitational-wave systems.
  •  
2.
  • Bouchet, P., et al. (författare)
  • JWST MIRI Imager Observations of Supernova SN 1987A
  • 2024
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 965:1
  • Tidskriftsartikel (refereegranskat)abstract
    • There exist very few mid-infrared (IR) observations of supernovae (SNe) in general. Therefore, SN 1987A, the closest visible SN in 400 yr, gives us the opportunity to explore the mid-IR properties of SNe, the dust in their ejecta, and the surrounding medium and to witness the birth of an SN remnant (SNR). The James Webb Space Telescope, with its high spatial resolution and extreme sensitivity, gives a new view on these issues. We report on the first imaging observations obtained with the Mid-InfraRed Instrument (MIRI). We build temperature maps and discuss the morphology of the nascent SNR. Our results show that the temperatures in the equatorial ring (ER) are quite nonuniform. This could be due to dust destruction in some parts of the ring, as had been assumed in some previous works. We show that the IR emission extends beyond the ER, illustrating the fact that the shock wave has now passed through this ring to affect the circumstellar medium on a larger scale. Finally, while submillimeter Atacama Large Millimeter Array observations have hinted at the location of the compact remnant of SN 1987A, we note that our MIRI data have found no such evidence.
  •  
3.
  • Fransson, Claes, 1951-, et al. (författare)
  • Emission lines due to ionizing radiation from a compact object in the remnant of Supernova 1987A
  • 2024
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 383:6685, s. 898-903
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby Supernova 1987A was accompanied by a burst of neutrino emission, which indicates that a compact object (a neutron star or black hole) was formed in the explosion. There has been no direct observation of this compact object. In this work, we observe the supernova remnant with JWST spectroscopy, finding narrow infrared emission lines of argon and sulfur. The line emission is spatially unresolved and blueshifted in velocity relative to the supernova rest frame. We interpret the lines as gas illuminated by a source of ionizing photons located close to the center of the expanding ejecta. Photoionization models show that the line ratios are consistent with ionization by a cooling neutron star or a pulsar wind nebula. The velocity shift could be evidence for a neutron star natal kick.
  •  
4.
  • Jones, O. C., et al. (författare)
  • Ejecta, Rings, and Dust in SN 1987A with JWST MIRI/MRS
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 958:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova (SN) 1987A is the nearest supernova in ∼400 yr. Using the JWST MIRI Medium Resolution Spectrograph, we spatially resolved the ejecta, equatorial ring (ER), and outer rings in the mid-infrared 12,927 days (35.4 yr) after the explosion. The spectra are rich in line and dust continuum emission, both in the ejecta and the ring. The broad emission lines (280–380 km s−1 FWHM) that are seen from all singly-ionized species originate from the expanding ER, with properties consistent with dense post-shock cooling gas. Narrower emission lines (100–170 km s−1 FWHM) are seen from species originating from a more extended lower-density component whose high ionization may have been produced by shocks progressing through the ER or by the UV radiation pulse associated with the original supernova event. The asymmetric east–west dust emission in the ER has continued to fade, with constant temperature, signifying a reduction in dust mass. Small grains in the ER are preferentially destroyed, with larger grains from the progenitor surviving the transition from SN into SNR. The ER dust is fit with a single set of optical constants, eliminating the need for a secondary featureless hot dust component. We find several broad ejecta emission lines from [Ne ii], [Ar ii], [Fe ii], and [Ni ii]. With the exception of [Fe ii] 25.99 μm, these all originate from the ejecta close to the ring and are likely to be excited by X-rays from the interaction. The [Fe ii] 5.34 to 25.99 μm line ratio indicates a temperature of only a few hundred K in the inner core, which is consistent with being powered by 44 Ti decay.
  •  
5.
  • Larsson, Josefin, et al. (författare)
  • JWST NIRSpec Observations of Supernova 1987A : From the Inner Ejecta to the Reverse Shock
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 949:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial results from JWST NIRSpec integral field unit observations of the nearby supernova SN 1987A. The observations provide the first spatially resolved spectroscopy of the ejecta and equatorial ring (ER) over the 1-5 μm range. We construct 3D emissivity maps of the [Fe i] 1.443 μm line from the inner ejecta and the He i 1.083 μm line from the reverse shock (RS), where the former probes the explosion geometry and the latter traces the structure of the circumstellar medium. We also present a model for the integrated spectrum of the ejecta. The [Fe i] 3D map reveals a highly asymmetric morphology resembling a broken dipole, dominated by two large clumps with velocities of ∼2300 km s−1. We also find evidence that the Fe-rich inner ejecta have started to interact with the RS. The RS surface traced by the He i line extends from just inside the ER to higher latitudes on both sides of the ER with a half-opening angle ∼45°, forming a bubble-like structure. The spectral model for the ejecta allows us to identify the many emission lines, including numerous H2 lines. We find that the H2 is most likely excited by far-UV emission, while the metal-line ratios are consistent with a combination of collisional excitation and recombination in the low-temperature ejecta. We also find several high-ionization coronal lines from the ER, requiring a temperature ≳2 × 106 K.
  •  
6.
  •  
7.
  •  
8.
  • Wesson, R., et al. (författare)
  • JWST observations of the Ring Nebula (NGC 6720): I. Imaging of the rings, globules, and arcs
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 528:2, s. 3392-3416
  • Tidskriftsartikel (refereegranskat)abstract
    • We present JWST images of the well-known planetary nebula NGC 6720 (the Ring Nebula), covering wavelengths from 1.6 to 25 m. The bright shell is strongly fragmented with some 20 000 dense globules, bright in H2, with a characteristic diameter of 0.2 arcsec and density nH ∼105-106 cm-3. The shell contains a narrow ring of polycyclic aromatic hydrocarbon (PAH) emission. H2 is found throughout the shell and also in the halo. H2 in the halo may be located on the swept-up walls of a biconal polar flow. The central cavity is filled with high-ionization gas and shows two linear structures which we suggest are the edges of a biconal flow, seen in projection against the cavity. The central star is located 2 arcsec from the emission centroid of the cavity and shell. Linear features ('spikes') extend outward from the ring, pointing away from the central star. Hydrodynamical simulations reproduce the clumping and possibly the spikes. Around 10 low-contrast, regularly spaced concentric arc-like features are present; they suggest orbital modulation by a low-mass companion with a period of about 280 yr. A previously known much wider companion is located at a projected separation of about 15 000 au; we show that it is an M2-M4 dwarf. NGC 6720 is therefore a triple star system. These features, including the multiplicity, are similar to those seen in the Southern Ring Nebula (NGC 3132) and may be a common aspect of such nebulae.
  •  
9.
  • Milisavljevic, Dan, et al. (författare)
  • A JWST Survey of the Supernova Remnant Cassiopeia A
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 965:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor's oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant's interior pockmarked with small (∼1'') round holes formed by ≲01 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼01 and 1' reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3 μm) from the neutron star in Cas A's center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy