SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weyhenmeyer Gesa A.) srt2:(2005-2009)"

Sökning: WFRF:(Weyhenmeyer Gesa A.) > (2005-2009)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tranvik, Lars J., et al. (författare)
  • Lakes and reservoirs as regulators of carbon cycling and climate
  • 2009
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 54:6:2, s. 2298-2314
  • Forskningsöversikt (refereegranskat)abstract
    • We explore the role of lakes in carbon cycling and global climate, examine the mechanisms influencing carbon pools and transformations in lakes, and discuss how the metabolism of carbon in the inland waters is likely to change in response to climate. Furthermore, we project changes as global climate change in the abundance and spatial distribution of lakes in the biosphere, and we revise the estimate for the global extent of carbon transformation in inland waters. This synthesis demonstrates that the global annual emissions of carbon dioxide from inland waters to the atmosphere are similar in magnitude to the carbon dioxide uptake by the oceans and that the global burial of organic carbon in inland water sediments exceeds organic carbon sequestration on the ocean floor. The role of inland waters in global carbon cycling and climate forcing may be changed by human activities, including construction of impoundments, which accumulate large amounts of carbon in sediments and emit large amounts of methane to the atmosphere. Methane emissions are also expected from lakes on melting permafrost. The synthesis presented here indicates that (1) inland waters constitute a significant component of the global carbon cycle, (2) their contribution to this cycle has significantly changed as a result of human activities, and (3) they will continue to change in response to future climate change causing decreased as well as increased abundance of lakes as well as increases in the number of aquatic impoundments.
  •  
2.
  • Adrian, Rita, et al. (författare)
  • Lakes as sentinels of climate change
  • 2009
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 54:6(2), s. 2283-2297
  • Tidskriftsartikel (refereegranskat)abstract
    • While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment.
  •  
3.
  • Erlandsson, Martin, et al. (författare)
  • Natural variability in lake pH on seasonal, interannual and decadal time scales : implications for assessment of human impact
  • 2008
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 42:15, s. 5594-5599
  • Tidskriftsartikel (refereegranskat)abstract
    • Reference values define the natural state with respect to environmental stressors and are commonly used for assessments of ecological impacts and to set restoration targets. These reference values are often treated as constants, whereas in reality they can be highly variable. Here, we study the significance of this variability for assessments of human impact on the environment, by using almost two decades of observations from 95 acid-sensitive Swedish lakes. Our approach was to first estimate the preindustrial, steady-state reference level of acid neutralization capacity (ANC) for each lake with the hydro-geochemical model MAGIC. Then the variability in pH around this "baseline" was reconstructed from the contemporary, "natural" variability in the ANC, total organic carbon (TOC) and Al-concentrations, and partial CO2 pressure. The variability in reference pH was then examined for the period 1990-2004, on seasonal (single measurements), interannual (1-year median), and decadal (5-year median) scales. On the seasonal scale, the variability in reference pH ranged between 0.40 and 1.7. The range on the interannual time scale was up to 1.3 units and for the decadal scale up to 0.76 units. Since an anthropogenic pH decline of more than 0.4 units is deemed significant according to the Swedish Environmental Quality Criteria, this natural variability clearly needs to be accounted for when assessing acidification.
  •  
4.
  • Erlandsson, Martin, et al. (författare)
  • Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate
  • 2008
  • Ingår i: Global Change Biology. - : Blackwell Publishing. - 1354-1013 .- 1365-2486. ; 14:5, s. 1191-1198
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concentrations of organic matter ( OM) in surface waters have been noted over large parts of the boreal/nemoral zone in Europe and North America. This has raised questions about the causes and the likelihood of further increases. A number of drivers have been proposed, including temperature, hydrology, as well as SO42 - and Cl (-) deposition. The data reported so far, however, have been insufficient to define the relative importance of different drivers in landscapes where they interact. Thirty-five years of monthly measurements of absorbance and chemical oxygen demand ( COD), two common proxies for OM, from 28 large Scandinavian catchments provide an unprecedented opportunity to resolve the importance of hypothesized drivers. For 21 of the catchments, there are 18 years of total organic carbon (TOC) measurements as well. Despite the heterogeneity of the catchments with regards to climate, size and land use, there is a high degree of synchronicity in OM across the entire region. Rivers go from widespread trends of decreasing OM to increasing trends and back again three times in the 35-year record. This synchronicity in decadal scale oscillations and long-term trends suggest a common set of dominant OM drivers in these landscapes. Here, we use regression models to test the importance of different potential drivers. We show that flow and SO42 - together can predict most of the interannual variability in OM proxies, up to 88% for absorbance, up to 78% for COD. Two other candidate drivers, air temperature and Cl (-) , add little explanatory value. Declines in anthropogenic SO42 - since the mid-1970s are thus related to the observed OM increases in Scandinavia, but, in contrast to many recent studies, flow emerges as an even more important driver of OM variability. Stabilizing SO42 - levels also mean that hydrology is likely to be the major driver of future variability and trends in OM.
  •  
5.
  •  
6.
  • Khalili, Maria, et al. (författare)
  • Growing season variability of nitrate along a trophic gradient : contrasting patterns between lakes and streams
  • 2009
  • Ingår i: Aquatic Sciences. - : Springer Science and Business Media LLC. - 1015-1621 .- 1420-9055. ; 71:1, s. 25-33
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the growing season (May to October) variability of NO3-N across Swedish lakes and streams. We found that NO3-N concentrations showed the highest growing season variability among all water chemical variables tested, both in lakes and in streams. However, the growing season variability of NO3-N increased with increasing trophic status in lakes while it decreased in streams. We attributed the contrasting pattern between lakes and streams to the relative importance of biological uptake and denitrification with increasing trophic status. Our results highlight the relation between growing season NO3-N variability and trophic status, which is positive in lakes but negative in streams. The findings of this study have important ramifications for ecosystem studies as well as water management. We suggest that the assessment of growing season variability of NO3-N in aquatic systems can be improved by considering the effect of trophic status.
  •  
7.
  • Moss, Brian D., et al. (författare)
  • Climate change and the future of freshwater biodiversity in Europe : a primer for policy-makers
  • 2009
  • Ingår i: Freshwater Reviews. - : Freshwater Biological Association. - 1755-084X. ; 2:2, s. 103-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth's climate is changing, and by the end of the 21st century in Europe, average temperatures are likely to have risen by at least 2 °C, and more likely 4 °C with associated effects on patterns of precipitation and the frequency of extreme weather events. Attention among policy-makers is divided about how to minimise the change, how to mitigate its effects, how to maintain the natural resources on which societies depend and how to adapt human societies to the changes. Natural systems are still seen, through a long tradition of conservation management that is largely species-based, as amenable to adaptive management, and biodiversity, mostly perceived as the richness of plant and vertebrate communities, often forms a focus for planning. We argue that prediction of particular species changes will be possible only in a minority of cases but that prediction of trends in general structure and operation of four generic freshwater ecosystems (erosive rivers, depositional floodplain rivers, shallow lakes and deep lakes) in three broad zones of Europe (Mediterranean, Central and Arctic-Boreal) is practicable. Maintenance and rehabilitation of ecological structures and operations will inevitably and incidentally embrace restoration of appropriate levels of species biodiversity. Using expert judgement, based on an extensive literature, we have outlined, primarily for lay policy makers, the pristine features of these systems, their states under current human impacts, how these states are likely to alter with a warming of 2 °C to 4 °C and what might be done to mitigate this. We have avoided technical terms in the interests of communication, and although we have included full referencing as in academic papers, we have eliminated degrees of detail that could confuse broad policy-making 
  •  
8.
  •  
9.
  •  
10.
  • Weyhenmeyer, Gesa A. (författare)
  • Do warmer winters change variability patterns of physical and chemical lake conditions in Sweden?
  • 2009
  • Ingår i: Aquatic Ecology. - : Springer Science and Business Media LLC. - 1386-2588 .- 1573-5125. ; 43:3, s. 653-659
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the effect of a warmer winter climate on variability patterns of physical and chemical lake conditions was examined by using monthly air temperature data from 72 meteorological Swedish sites, ice breakup data from 77 Swedish lakes and monthly data of 17 water chemical variables from 11 nutrient-poor Swedish reference lakes during 1988–2005. The results showed significantly increasing variations of lake ice breakup dates and nitrate concentrations over Sweden along with increasing winter air temperatures. Variability patterns of other water chemical variables were not affected by warmer winters. Nitrate concentrations increased their variability in spring and early summer not only between lakes but also within lakes, which was attributed to a climate-induced increase in spring nitrate concentrations in particular in southern Sweden, while summer nitrate concentrations remained rather constant and low all over Sweden (median 10 μg l−1). Since nitrate concentrations play an important role for primary production, highly varying concentrations will be a challenge for biota to adapt.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy