SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(White Jon) srt2:(2020-2022)"

Sökning: WFRF:(White Jon) > (2020-2022)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aghanim, N., et al. (författare)
  • Planck 2018 results I. Overview and the cosmological legacy of Planck
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Space Agency's Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter Lambda CDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (theta (*)) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the Lambda CDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.
  •  
2.
  • Aghanim, N., et al. (författare)
  • Planck 2018 results VI. Cosmological parameters
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 sigma level. We find good consistency with the standard spatially-flat 6-parameter Lambda CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted base Lambda CDM in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega (c)h(2)=0.120 +/- 0.001, baryon density Omega (b)h(2)=0.0224 +/- 0.0001, scalar spectral index n(s)=0.965 +/- 0.004, and optical depth tau =0.054 +/- 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 theta (*)=1.0411 +/- 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-Lambda CDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H-0=(67.4 +/- 0.5) km s(-1) Mpc(-1); matter density parameter Omega (m)=0.315 +/- 0.007; and matter fluctuation amplitude sigma (8)=0.811 +/- 0.006. We find no compelling evidence for extensions to the base-Lambda CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N-eff=2.99 +/- 0.17, in agreement with the Standard Model prediction N-eff=3.046, and find that the neutrino mass is tightly constrained to Sigma m(nu)< 0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base CDM at over 2 sigma, which pulls some parameters that affect the lensing amplitude away from the Lambda CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Omega (K)=0.001 +/- 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w(0)=-1.03 +/- 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r(0.002)< 0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-CDM cosmology are in excellent agreement with observations. The Planck base-Lambda CDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey's combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 sigma, tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.
  •  
3.
  • Aghanim, N., et al. (författare)
  • Planck 2018 results VIII. Gravitational lensing
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • We present measurements of the cosmic microwave background (CMB) lensing potential using the final Planck 2018 temperature and polarization data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization maps from 5 sigma to 9 sigma. Combined with temperature, lensing is detected at 40 sigma. We present an extensive set of tests of the robustness of the lensing-potential power spectrum, and construct a minimum-variance estimator likelihood over lensing multipoles 8 <= L <= 400 (extending the range to lower L compared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the results from the Planck CMB power spectra within the Lambda CDM model. Combined with baryon density and other weak priors, the lensing analysis alone constrains (8)Omega (0.25)(m) = 0.589 +/- 0.020 sigma 8 Omega m 0.25 = 0.589 +/- 0.020 (1 sigma errors). Also combining with baryon acoustic oscillation data, we find tight individual parameter constraints, sigma (8)=0.811 +/- 0.019, H-0 = 67.9(-1.3)(+1.2) km s(-1) Mpc(-1) H 0 = 67 . 9 - 1.3 + 1.2 .> km s - 1 . Mpc - 1 , and Omega (m) = 0.303(-0.018)(+0.016) Omega m = 0 . 303 - 0.018 + 0.016 . Combining with Planck CMB power spectrum data, we measure sigma (8) to better than 1% precision, finding sigma (8)=0.811 +/- 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data at lower redshift, having a different degeneracy direction in sigma (8)-Omega (m) space; we find consistency with the lensing results from the Dark Energy Survey, and give combined lensing-only parameter constraints that are tighter than joint results using galaxy clustering. Using the Planck cosmic infrared background (CIB) maps as an additional tracer of high-redshift matter, we make a combined Planck-only estimate of the lensing potential over 60% of the sky with considerably more small-scale signal. We additionally demonstrate delensing of the Planck power spectra using the joint and individual lensing potential estimates, detecting a maximum removal of 40% of the lensing-induced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance.
  •  
4.
  • Akrami, Y., et al. (författare)
  • Planck 2018 results X. Constraints on inflation
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the implications for cosmic inflation of the 2018 release of the Planck cosmic microwave background (CMB) anisotropy measurements. The results are fully consistent with those reported using the data from the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be n(s)=0.9649 +/- 0.0042 at 68% CL. We find no evidence for a scale dependence of n(s), either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4% at 95% CL by combining Planck with a compilation of baryon acoustic oscillation data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, r(0.002)< 0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain r(0.002)< 0.056. In the framework of standard single-field inflationary models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave potential, V(phi) < 0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond slow roll. Three different methods for the non-parametric reconstruction of the primordial power spectrum consistently confirm a pure power law in the range of comoving scales 0.005 Mpc(-1)k less than or similar to 0.2 Mpc(-1). A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectra. For the case of oscillatory features that are logarithmic or linear in k, this result is further strengthened by a new combined analysis including the Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the non-adiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95% CL for cold dark matter, neutrino density, and neutrino velocity, respectively. Planck power spectra plus lensing set constraints on the amplitude of compensated cold dark matter-baryon isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polarization data do not support physical models for a scale-dependent dipolar modulation. All these findings support the key predictions of the standard single-field inflationary models, which will be further tested by future cosmological observations.
  •  
5.
  • Burnett, Jon, et al. (författare)
  • Pandemics, Policing and Protest
  • 2022
  • Ingår i: Justice, Power and Resistance. - 2398-2764. ; 5:1-2, s. 2-8
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Downey, Harriet, et al. (författare)
  • Training future generations to deliver evidence-based conservation and ecosystem management
  • 2021
  • Ingår i: Ecological Solutions and Evidence. - : Wiley. - 2688-8319. ; 2:1
  • Forskningsöversikt (refereegranskat)abstract
    • 1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis.2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice.3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses.4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.
  •  
7.
  • Muscarella, Robert, et al. (författare)
  • The global abundance of tree palms
  • 2020
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
8.
  • Strong, Kathleen L., et al. (författare)
  • Patterns and trends in causes of child and adolescent mortality 2000-2016 : setting the scene for child health redesign
  • 2021
  • Ingår i: BMJ Global Health. - : BMJ Publishing Group Ltd. - 2059-7908. ; 6:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The under-5 mortality rate has declined from 93 deaths per 1000 live births in 1990 to 39 per 1000 live births in 2018. This improvement in child survival warrants an examination of age-specific trends and causes of death over time and across regions and an extension of the survival focus to older children and adolescents. We examine patterns and trends in mortality for neonates, postneonatal infants, young children, older children, young adolescents and older adolescents from 2000 to 2016. Levels and trends in causes of death for children and adolescents under 20 years of age are based on United Nations Inter-agency Group for Child Mortality Estimation for all-cause mortality, the Maternal and Child Epidemiology Estimation group for cause of death among children under-5 and WHO Global Health Estimates for 5-19 year-olds. From 2000 to 2016, the proportion of deaths in young children aged 1-4 years declined in most regions while neonatal deaths became over 25% of all deaths under 20 years in all regions and over 50% of all under-5 deaths in all regions except for sub-Saharan Africa which remains the region with the highest under-5 mortality in the world. Although these estimates have great variability at the country level, the overall regional patterns show that mortality in children under the age of 5 is increasingly concentrated in the neonatal period and in some regions, in older adolescents. The leading causes of disease for children under-5 remain preterm birth and infectious diseases, pneumonia, diarrhoea and malaria. For older children and adolescents, injuries become important causes of death as do interpersonal violence and self-harm. Causes of death vary by region.
  •  
9.
  • White, Hannah J., et al. (författare)
  • Ecosystem stability at the landscape scale is primarily associated with climatic history
  • 2022
  • Ingår i: Functional Ecology. - : Wiley. - 0269-8463 .- 1365-2435. ; 36:3, s. 622-634
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an increasing interest in landscape-scale perspectives of ecosystem functioning to inform policy and conservation decisions. However, we need a better understanding of the stability of ecosystem functioning (e.g. plant productivity) at the landscape scale to inform policy around topics such as global food security. We investigate the role of the ecological and environmental context on landscape-scale stability of plant productivity in agricultural pasture using remotely sensed enhanced vegetation index data. We determine whether four measures of stability (variability, magnitude of extreme anomalies, recovery time and recovery rate) are predicted by (a) species richness of vascular plants, (b) regional land cover heterogeneity and (c) climatic history. Stability of plant productivity was primarily associated with climatic history, particularly a history of extreme events. These effects outweighed any positive effects of species richness in the agricultural landscape. A history of variable and extreme climates both increased and decreased contemporary ecosystem stability, suggesting both cumulative and legacy effects, whereas land cover heterogeneity had no effect on stability. The landscape scale is a relevant spatial scale for the management of an ecosystem's stability. At this scale, we find that past climate is a stronger driver of stability in plant productivity than species richness, differing from results at finer field scales. Management should take an integrated approach by incorporating the environmental context of the landscape, such as its climatic history, and consider multiple components of stability to maintain functioning in landscapes that are particularly vulnerable to environmental change. A free Plain Language Summary can be found within the Supporting Information of this article.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy