SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Widerlund Anders) srt2:(2015-2019)"

Sökning: WFRF:(Widerlund Anders) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, Lino, 1988- (författare)
  • Nitrogen Cycling at Cold Climate Mine Sites in Northen Sweden
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • High nitrogen discharge from mining sites has been an environmental issue that has been closely studied in the recent years. The environmental effects of high nitrogen discharge are mainly eutrophication, but can also lead to changed species composition and algae blooms. Nitrogen is a highly abundant element and is the most abundant element in the atmosphere, where 78% by volume is present as dinitrogen (N2 ). Nitrogen is present in reduced form in all organic life as ammonium (NH4 + ). Nitrogen is also present in reduced form as nitrate (NO3 - ) or nitrite (NO2 - ) in most aquatic systems. Both nitrate and ammonium is contributing to eutrophication problems worldwide and ammonia (NH3 ) is direct toxic in high concentration to certain sensitive aquatic species. Nitrate in high concentration is also direct toxic, both to humans but also to aquatic biota. To trace and quantify different nitrogen transforming processes, their sources and their sinks is called tracing nitrogen cycling and is important due to the environmental effect of nitrogen. Nitrogen is available in many different species and oxidation states which all have their respective geochemistry. This thesis focuses on tracing the complex nitrogen cycle in two different cold climate mining systems in northern Sweden using two different methods. The two studied systems are:The LKAB underground iron ore mine in KirunaBoliden Minerals AB open pit copper ore mine Aitik outside Gällivare Two different approaches were used to trace the nitrogen cycling. The LKAB Kiruna mine was investigated using stable nitrogen isotopes. The isotope analysis showed high capability to trace nitrogen cycling, both quantative and qualitative. We also showed the origin of the isotope signals which gives indication to the different sources of nitrogen in the mine. The presented study shows presence of nitrification, ammonium volatilization and ammonium adsorption to waste rock to occur in the water transport system. The nitrogen cycling in the Boliden Aitik mine was investigated using a nitrogen model which we developed as part of this thesis. The model is based on Yakushevs Redox Layer model (ROLM). The model contains the state variables ammonium, nitrate, nitrite, plankton, phosphate, dead organic material (both particulate and dissolved) as well as oxygen. The nitrogen concentrations in the Boliden Aitik mine was modeled for the clarification pond and showed, in general, low biological activity. The biological mediated reactions such as nitrification, denitrification, phytoplankton growth and grazing were low in relation to natural lake systems
  •  
2.
  • Chlot, Sara, et al. (författare)
  • Nitrogen uptake and cycling in Phragmites australis in a lake-receiving nutrient-rich mine water : a 15 N tracer study
  • 2015
  • Ingår i: Environmental Earth Sciences. - : Springer Science and Business Media LLC. - 1866-6280 .- 1866-6299. ; 74:7, s. 6027-6038
  • Tidskriftsartikel (refereegranskat)abstract
    • Uptake and cycling of nitrogen (N) in the littoral zone of a lake-receiving nutrient-rich mine water located in Boliden, northern Sweden, was investigated. Stable isotope tracer solutions of 15N as NH4 + (NAM mesocosm) or NO3 − (NOX mesocosm) were added to mesocosms enclosing plants of common reed (Phragmites australis). The 15N abundance in various plant parts was measured at pre-defined time intervals over an experimental period of 22 days. During the course of the experiment, plant parts from the NAM mesocosms were significantly more enriched in 15N than plant parts from the NOX mesocosms. On day 13, Δδ15N values of the fine roots from the NAM mesocosms had reached +8220 ‰, while the maximum Δδ15N value in NOX roots was considerably lower at +4430 ‰. Using 15N values in macrophyte tissues present at the end of the experiment enabled calculations of uptake rates and % of tracer N recovered in the plant (%tracerNrecov). Maximum tracer uptake rates were higher for the NAM mesocosms (1.4 µg g−1 min−1 or 48 mg N m−2 d−1) compared to the NOX mesocosms (0.23 µg g−1 min−1 or 8.5 mg N m−2 d−1). Calculations of %tracerNrecov indicated that 1–8 and 25–44 % of added N was assimilated by plants in the NOX and NAM mesocosms, respectively. Hence, P. australis was more effective in assimilating NH4 +, and a larger portion of the tracer N accumulated in the roots compared to the other plant parts. Consequently, macrophyte N removal is most effective for cold-climate aquatic systems receiving mine water dominated by NH4 +. For permanent removal of N, the whole plant (including the roots) should be harvested.
  •  
3.
  • Hellman, Maria, et al. (författare)
  • External carbon addition for enhancing denitrification modifies bacterial community composition and affects CH4 and N2O production in sub-arctic mining pond sediments
  • 2019
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 158, s. 22-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Explosives used in mining operations release reactive nitrogen (N) that discharge into surrounding waters. Existing pond systems at mine sites could be used for N removal through denitrification and we investigated capacity in tailings and clarification pond sediments at an iron-ore mine site. Despite differences in microbial community structure in the two ponds, the potential denitrification rates were similar, although carbon limited. Therefore, a microcosm experiment in which we amended sediment from the clarification pond with acetate, cellulose or green algae as possible carbon sources was conducted during 10 weeks under denitrifying conditions. Algae and acetate treatments showed efficient nitrate removal and increased potential denitrification rates, whereas cellulose was not different from the control. Denitrifiers were overall more abundant than bacteria performing dissimilatory nitrate reduction to ammonium (DNRA) or anaerobic ammonium oxidation, although DNRA bacteria increased in the algae treatment and this coincided with accumulation of ammonium. The algae addition also caused higher emissions of methane (CH4) and nitrous oxide (N2O). The bacterial community in this treatment had a large proportion of Bacteroidia, sulfate reducing taxa and bacteria known as fermenters. Functional gene abundances indicated an imbalance between organisms that produce N2O in relation to those that can reduce it, with the algae treatment showing the lowest relative capacity for N2O reduction. These findings show that pond sediments have the potential to contribute to mitigating nitrate levels in water from mining industry, but it is important to consider the type of carbon supply as it affects the community composition, which in turn can lead to uwanted processes and increased greenhouse gas emissions.
  •  
4.
  • Nilsson, Lino, 1988-, et al. (författare)
  • Modelling tool for predicting and simulating nitrogen concentrations in cold-climate mining ponds
  • 2018
  • Ingår i: Ecological Modelling. - : Elsevier. - 0304-3800 .- 1872-7026. ; 380, s. 40-52
  • Tidskriftsartikel (refereegranskat)abstract
    • A nitrogen model was developed with the aim to trace nitrogen cycling in a cold climate-mining pond at the Aitik copper mine in northern Sweden. The model contains 10 state variables and 19 nitrogen cycling reactions. The model also includes sediment and physical properties of the pond, such as evaporation, freezing and thawing. The model was written in Mathworks MATLAB and was calibrated and validated using environmental monitoring data for the clarification pond at the Aitik mine. The data used comprised monthly values of nitrogen speciation, phosphorous and water flow. The model accurately predicts ammonium (r2 = 0.84) and nitrate (r2 = 0.82) concentrations in a time series from February 2012–August 2014. The model did not accurately predict nitrate concentrations (r2 = 0.11), presumably due to high oxygen concentration in the pond water that prevented denitrification in the water column. The transport of organic material to the sediment was also limiting denitrification in the sediment. When allowing denitrification in the water column as well as increasing the rate of transport of organic material to the sediment the nitrate prediction capacity increased to a satisfactory level (r2 = 0.54). A sensitivity analysis for the system showed that the most sensitive reactions for the water column were oxic mineralisation as well as the nitrification rate.
  •  
5.
  • Nilsson, Lino, 1988- (författare)
  • Nitrogen-cycling tracing methods : Case studies at cold-climate mine sites in northern Sweden
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • High nitrogen effluents from mine sites is an environmental issue which has received relatively little attention historically. In recent years a number of studies have showed the environmental effects of high nitrogen discharge to natural water bodies, which include local eutrophication, high risk of acute reducing conditions and changed species composition in the receiving waters. Apart from the direct environmental effects of high nitrogen discharge some forms of nitrogen can be directly toxic- ammonia and nitric gas for instance, and some can be indirectly toxic, for instance nitrate which causes methemoglobinemia in infants if ingested.This thesis shows how the developed nitrogen tracing methods can be applied in complex water transport systems such as in a mining environment. Two main study sites were used in this thesis, the LKAB iron mine at Kiruna and the Aitik copper mine at Gallivare operated by Boliden Mineral AB. The nitrogen tracing methods used in this study are stable isotope analysis, combined nitrogen and oxygen isotope analysis, source partitioning using linear combination of sources, numerical analysis using kinetic nitrogen reaction rates, numerical model verification using stable nitrogen isotopes, and Bayesian statistical models to estimate nitrogen concentrations. The study also demonstrates an experimental method of reducing nitrogen concentrations in the mining pond at the LKAB Kiruna site. The nitrogen reducing method was tested in a small scale mesocosm experiment at the Kiruna site in northern Sweden, where a nitrogen reduction rate of around 0.25 - 0.5% total nitrate per day could be achieved.The nitrogen treatment method consists of fertilising the pond system with small amounts of bioavailable phosphorus. Phosphorus is generally the limiting factor for primary production and in the studied mining systems which have high nitrogen concentrations the phosphorus is assimilated into organic matter almost immediately after fertilisation. The phosphorus is assimilated into phytoplankton (algae) which then settles and is used as a carbon source during anaerobic decomposition (denitrification). The denitrification reaction reduces nitrate into nitrogen gas. This would reduce the nitrogen release from mine sites significantly, since nitrate is the dominant form of nitrogen at the two studied mine sites.Concluding the thesis is a 2.5D model which couples a numerical kinetic nitrogen model with a hydrodynamic model. The hydrodynamic model was the Shallow Water Equations (SWE) model that incorporates wind turbulence, inlets, and outlets as source terms for the water velocities. The two models are coupled via velocity, where the nitrogen model couples via chemical mixing and fluxes are calculated from the water velocities in each model cell. The results of this thesis suggests that nitrogen release from the the Kiruna clarification pond could be reduced significantly via the use of phosphorus fertilisation. This is due to an increased denitrification rate in the pond, and the fact that much of the discharge water from the pond system is recirculated back into the mineral processing plants. The recirculation essentially means that the nitrate in the mine water will have quite a long retention time before being passed out the receiving waters.Although the presented nitrate reduction approach showed promising reduction rates, the potential risk of eutrophication in the receiving waters is high, as the discharge water will contain high levels of nitrogen and potentially also phosphorus. The transport pathways and possible natural attenuation of phosphorus must be thoroughly investigated before the presented nitrate reduction method can be implemented at full scale in mine ponds.
  •  
6.
  • Nilsson, Lino, et al. (författare)
  • Tracing nitrogen cycling in mining waters using stable nitrogen isotope analysis
  • 2017
  • Ingår i: Applied Geochemistry. - : Elsevier. - 0883-2927 .- 1872-9134. ; 84, s. 41-51
  • Tidskriftsartikel (refereegranskat)abstract
    • We show how we used stable nitrogen and oxygen isotopes in ammonium and nitrate to identify and quantify nitrogen transformation and nitrogen sources at the LKAB mining site in northern Sweden. Stable nitrogen isotope analysis worked as an excellent tool for tracing nitrogen cycling in rapidly moving process waters. The isotope analysis was performed on the mining process waters at seven different key points along the water flow and we identified nitrification, ammonia volatilisation, and ammonium adsorption as nitrogen transformation processes. The source of nitrogen is historically explained as undetonated ammonium-nitrate based explosives. We used nitrate nitrogen and oxygen isotopes to quantify four nitrogen sources in the accumulated water in the mine as well as three sources in an above ground process water reservoir. The nitrate isotope data showed that most of the nitrate (70–80%) in the accumulated water underground originated from a sampling point located close to the surface and only a minor fraction (5–20%) originated directly from undetonated explosives (direct dissolution of NH4NO3 and nitrification of NH4). Nitrate from natural groundwater formed roughly 12% of mine water nitrate. In the above ground process water reservoir isotope data indicated another source of nitrogen coming from undetonated explosives.
  •  
7.
  • Suteerasak, Thongchai, et al. (författare)
  • Deposition rates and C-14 apparent ages of Holocene sediments in the Bothnian Bay of the Gulf of Bothnia using paleomagnetic dating as a reference
  • 2017
  • Ingår i: Marine Geology. - : Elsevier BV. - 0025-3227 .- 1872-6151. ; 383, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Three 6-m-long cores of sediments were collected in the northern, middle and southern part of the Bothnian Bay. The sediments were dated by paleomagnetic dating techniques, constrained by magnetic properties and geochemical data. The results indicate the ages of the sediments in the bottom part of the cores in the northern, middle and southern parts of the Bothnian Bay to be approximately 5300 years BP, 5350 years BP and 3500 years BP, respectively. The deposition rate calculated from the estimated ages at various depths show that the deposition rate was generally in the range 0.5-1.5 mm/year but it was higher in the southern part than in the middle and northern parts of the bay. There was a significant increase in the deposition rate at ca 2200 years BP, recorded in all three cores, a rate varying between 2.47 and 3.07 mm/year and lasting until ca 1840 years BP. A proposed constant uplift rate of the crust during the period ca 5500 years BP to present is thus not reflected by a constant deposition rate. The peaks in deposition rates at ca 2200-1840 years BP were followed by a decrease in salinity. This phenomenon is suggested to be caused by crustal uplift, with a threshold being formed in the southern part of the bay, thereby increasing the reactivation of bottom sediments and reducing the inflow of brackish water from the Bothnian Sea. The C-14 ages of the sediments reveal differences in age compared with the paleomagnetic ages. In the southern core, the C-14 ages are ca 1350 years older, and in the north, the age offset is mixed. The reactivation and re-deposition of sediments is argued to be the reason for the apparent C-14 age differences. This finding demonstrates that C-14 cannot be used for the dating of Bothnian Bay sediments unless the radiocarbon age offset has been determined.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy