SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wieser M.) srt2:(2020-2024)"

Sökning: WFRF:(Wieser M.) > (2020-2024)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Poyatos, R., et al. (författare)
  • Global transpiration data from sap flow measurements: the SAPFLUXNET database
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 13:6, s. 2607-2649
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.
  •  
2.
  • Orsini, S., et al. (författare)
  • Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission
  • 2022
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury’s southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury’s magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before.
  •  
3.
  • Marutescu, L. G., et al. (författare)
  • Wastewater treatment plants, an "escape gate" for ESCAPE pathogens
  • 2023
  • Ingår i: Frontiers in Microbiology. - 1664-302X. ; 14
  • Forskningsöversikt (refereegranskat)abstract
    • Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.
  •  
4.
  • Rodriguez-Molina, D., et al. (författare)
  • Carriage of ESBL-producing Enterobacterales in wastewater treatment plant workers and surrounding residents - the AWARE Study
  • 2021
  • Ingår i: European Journal of Clinical Microbiology & Infectious Diseases. - : Springer Science and Business Media LLC. - 0934-9723 .- 1435-4373.
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate whether wastewater treatment plant (WWTP) workers and residents living in close proximity to a WWTP have elevated carriage rates of ESBL-producing Enterobacterales, as compared to the general population. From 2018 to 2020, we carried out a cross-sectional study in Germany, the Netherlands, and Romania among WWTP workers (N = 344), nearby residents (living <= 300 m away from WWTPs; N = 431) and distant residents (living >= 1000 m away = reference group; N = 1165). We collected information on potential confounders via questionnaire. Culture of participants' stool samples was performed with ChromID (R)-ESBL agar plates and species identification with MALDI-TOF-MS. We used logistic regression to estimate the odds ratio (OR) for carrying ESBL-producing E. coli (ESBL-EC). Sensitivity analyses included stratification by country and interaction models using country as secondary exposure. Prevalence of ESBL-EC was 11% (workers), 29% (nearby residents), and 7% (distant residents), and higher in Romania (28%) than in Germany (7%) and the Netherlands (6%). Models stratified by country showed that within the Romanian population, WWTP workers are about twice as likely (aOR = 2.34, 95% CI: 1.22-4.50) and nearby residents about three times as likely (aOR = 3.17, 95% CI: 1.80-5.59) to be ESBL-EC carriers, when compared with distant residents. In stratified analyses by country, we found an increased risk for carriage of ESBL-EC in Romanian workers and nearby residents. This effect was higher for nearby residents than for workers, which suggests that, for nearby residents, factors other than the local WWTP could contribute to the increased carriage.
  •  
5.
  • Rodriguez-Molina, D., et al. (författare)
  • International Travel as a Risk Factor for Carriage of Extended-Spectrum beta-Lactamase-Producing Escherichia coli in a Large Sample of European Individuals-The AWARE Study
  • 2022
  • Ingår i: INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH. - : MDPI AG. - 1660-4601. ; 19:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibiotic resistance (AR) is currently a major threat to global health, calling for a One Health approach to be properly understood, monitored, tackled, and managed. Potential risk factors for AR are often studied in specific high-risk populations, but are still poorly understood in the general population. Our aim was to explore, describe, and characterize potential risk factors for carriage of Extended-Spectrum Beta-Lactamase-resistant Escherichia coli (ESBL-EC) in a large sample of European individuals aged between 16 and 67 years recruited from the general population in Southern Germany, the Netherlands, and Romania. Questionnaire and stool sample collection for this cross-sectional study took place from September 2018 to March 2020. Selected cultures of participants' stool samples were analyzed for detection of ESBL-EC. A total of 1183 participants were included in the analyses: 333 from Germany, 689 from the Netherlands, and 161 from Romania. Travels to Northern Africa (adjusted Odds Ratio, aOR 4.03, 95% Confidence Interval, CI 1.67-9.68), Sub-Saharan Africa (aOR 4.60, 95% CI 1.60-13.26), and Asia (aOR 4.08, 95% CI 1.97-8.43) were identified as independent risk factors for carriage of ESBL-EC. Therefore, travel to these regions should continue to be routinely asked about by clinical practitioners as possible risk factors when considering antibiotic therapy.
  •  
6.
  • Wengenroth, L., et al. (författare)
  • Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study
  • 2021
  • Ingår i: Antibiotics-Basel. - : MDPI AG. - 2079-6382. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living >= 1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Dayton, K., et al. (författare)
  • Magmatic Storage and Volatile Fluxes of the 2021 La Palma Eruption
  • 2024
  • Ingår i: Geochemistry Geophysics Geosystems. - : American Geophysical Union (AGU). - 1525-2027. ; 25:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2021 La Palma eruption (Tajogaite) was unprecedented in magnitude, duration, and degree of monitoring compared to historical volcanism on La Palma. Here, we provide data on melt inclusions in samples from the beginning and end of the eruption to compare the utility of both melt and fluid inclusions as recorders of magma storage. We also investigated compositional heterogeneities within the magmatic plumbing system. We found two populations of olivine crystals: a low Mg# (78–82) population present at the beginning and end of eruption, recording the maximum volatile contents (2.5 wt % H2O, 1,800 ppm F, 700 ppm Cl, 3,800 ppm S) and a higher Mg# (83–86) population sampled toward the end of the eruption, with lower volatile contents. Despite their host composition, melt inclusions share the same maximum range of CO2 concentrations (1.2–1.4 wt %), indicating olivine growth and inclusion capture at similar depths. Overall, both melt and fluid inclusions record similar pressures (450–850 MPa, ∼15–30 km), and when hosted in the same olivine crystal pressures are indistinguishable within error. At these mantle pressures, CO2 is expected to be an exsolved phase explaining the similar range of CO2 between the two samples, but other volatile species (F, Cl, S) behave incompatibly, and thus, the increase between the two olivine populations can be explained by fractional crystallization prior to eruption. Finally, based on our new data, we provide estimates on the total volatile emission of the eruption.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy