SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wihlborg Anna Karin) srt2:(2005-2009)"

Sökning: WFRF:(Wihlborg Anna Karin) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amisten, Stefan, et al. (författare)
  • Increased risk of acute myocardial infarction and elevated levels of C-reactive protein in carriersof the Thr-87 variant of the ATP receptor P2Y11.
  • 2007
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 1522-9645 .- 0195-668X. ; 28:1, s. 13-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Extracellular ATP acting on the P2Y(11) receptor regulates inflammatory cells. We hypothesized that polymorphisms in the receptor could influence the risk of acute myocardial infarction (AMI). Methods and results In the Malmo diet and cancer AMI case-control study (n = 3732) the P2Y(11) gene Thr-87 polymorphism was present in 19.8% of the controls and 22.9% in AMI patients (OR 1.21; P = 0.03). Stronger associations were found in patients with family history (FH) of AMI, 1.32; early-onset (EO) AMI, 1.43; or EO AMI combined with FH, 1.50; supporting a genetic mechanism. The Thr-87 homozygotes had an even greater risk of AMI, 1.94 (P = 0.04); and 2.48 in the EO AMI subgroup, suggesting a genetic dosage effect. In the cardiovascular risk factor group (n = 6055), 21.3% carried the Thr-87 allele. C-reactive protein was elevated in Thr-87 carriers: 1.6 mg/L vs. 1.3 mg/L (P = 0.001). No difference was seen for blood pressure, lipids, body mass index, smoking, or diabetes mellitus. Conclusion The common Ala-87-Thr polymorphism of the P2Y(11) receptor is associated with AMI and increased levels of C-reactive protein. We hypothesize that an inflammatory mechanism might be involved. The P2Y(11) receptor is a promising new drug target in the prevention of AMI.
  •  
2.
  • Balogh, Johanna, et al. (författare)
  • Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y(11)-like receptors.
  • 2005
  • Ingår i: Journal of Molecular and Cellular Cardiology. - : Elsevier BV. - 1095-8584 .- 0022-2828. ; 39:2, s. 223-230
  • Tidskriftsartikel (refereegranskat)abstract
    • ATP is released as a cotransmitter together with catecholamines from sympathetic nerves. In the heart ATP has been shown to cause a pronounced positive inotropic effect and may also act in synergy with β-adrenergic agonists to augment cardiomyocyte contractility. The aim of the present study was to investigate the inotropic effects mediated by purinergic P2 receptors using isolated mouse cardiomyocytes. Stable adenine nucleotide analogs were used and the agonist rank order for adenine nucleotide stimulation of the mouse cardiomyocytes was AR-C67085 > ATPγS > 2-MeSATP >>> 2-MeSADP = 0, that fits the agonist profile of the P2Y11 receptor. ATPγS induced a positive inotropic response in single mouse cardiomyocytes. The response was similar to that for the β1 receptor agonist isoproterenol. The most potent response was obtained using AR-C67085, a P2Y11 receptor agonist. This agonist also potentiated contractions in isolated trabecular preparations. The adenylyl cyclase blocker (SQ22563) and phospholipase C (PLC) blocker (U73122) demonstrated that both pathways were required for the inotropic response of AR-C67085. A cAMP enzyme immunoassay confirmed that AR-C67085 increased cAMP in the cardiomyocytes. These findings are in agreement with the P2Y11 receptor, coupled both to activation of IP3 and cAMP, being a major receptor for ATP induced inotropy. Analyzing cardiomyocytes from desmin deficient mice, Des–/–, with a congenital cardiomyopathy, we found a lower sensitivity to AR-C67085, suggesting a down-regulation of P2Y11 receptor function in heart failure. The prominent action of the P2Y11 receptor in controling cardiomyocyte contractility and possible alterations in its function during cardiomyopathy may suggest this receptor as a potential therapeutic target. It is possible that agonists for the P2Y11 receptor could be used to improve cardiac output in patients with circulatory shock and that P2Y11 receptor antagonist could be beneficial in patients with congestive heart failure (CHF).
  •  
3.
  • Bergdahl, Andreas, et al. (författare)
  • Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry.
  • 2005
  • Ingår i: American Journal of Physiology: Cell Physiology. - : American Physiological Society. - 1522-1563 .- 0363-6143. ; 288:4, s. 872-880
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of the smooth muscle contractile phenotype is critical in atherosclerosis and in restenosis after angioplasty, but its early signals are incompletely understood. In this study, we have explored the role of transient receptor potential canonical (TRPC) proteins, which have been suggested to mediate store-operated Ca2+ entry (SOCE). Contractility of rat cerebral arteries in organ culture is preserved for several days, whereas SOCE is increased. In correlation with this increase is that nifedipine-insensitive whole cell current, activated by depletion of intracellular Ca2+ stores, was increased by 50% in cells isolated from arteries cultured for 3 days. TRPC1 and TRPC6 mRNA were more than fivefold increased in cells isolated after organ culture, whereas TRPC3 was decreased. Immunofluorescent staining and/or Western blotting of arteries and isolated cells showed upregulation of TRPC1 and TRPC6 proteins during organ culture. In intact arteries, TRPC4 expression correlated with the amount of endothelium present. Ca2+ addition after store depletion caused a contraction in cultured, but not in freshly dissected, arteries. A polyclonal TRPC1 antibody directed against an extracellular epitope inhibited this contraction by approximately 50%. To investigate the basis of the TRPC upregulation and assess its possible clinical significance, segments of human internal mammary artery were organ cultured for 24 h and then exposed to balloon dilatation in vitro, followed by further culturing for up to 48 h. After dilatation, TRPC1 and TRPC6 mRNA were progressively increased compared with undilated control segments. The results of this study indicate that vascular injury enhances plasticity in TRPC expression, that TRPC expression correlates with cellular Ca2+ handling, and that TRPC1 is a subunit of upregulated store-operated Ca2+ channels.
  •  
4.
  • Braun, Oscar, et al. (författare)
  • Residual platelet ADP reactivity after clopidogrel treatment is dependent on activation of both the unblocked P2Y(1) and the P2Y (12) receptor and is correlated with protein expression of P2Y (12).
  • 2007
  • Ingår i: Purinergic Signalling. - : Springer Science and Business Media LLC. - 1573-9546 .- 1573-9538. ; 3:3, s. 195-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Two ADP receptors have been identified on human platelets: P2Y(1) and P2Y(12). The P2Y(12) receptor blocker clopidogrel is widely used to reduce the risks in acute coronary syndromes, but, currently, there is no P2Y(1) blocker in clinical use. Evidence for variable responses to clopidogrel has been described in several reports. The mechanistic explanation for this phenomenon is not fully understood. The aim of this study was to examine mechanisms responsible for variability of 2MeS-ADP, a stable ADP analogue, induced platelet reactivity in clopidogrel-treated patients. Platelet reactivity was assessed by flow cytometry measurements of P-selectin (CD62P) and activated GpIIb/IIIa complex (PAC-1). Residual 2MeS-ADP activation via the P2Y(12) and P2Y(1) receptors was determined by co-incubation with the selective antagonists AR-C69931 and MRS2179 in vitro. P2Y(1) and P2Y(12) receptor expression on both RNA and protein level were determined, as well as the P2Y(12) H1 or H2 haplotypes. Our data suggest that the residual platelet activation of 2MeS-ADP after clopidogrel treatment is partly due to an inadequate antagonistic effect of clopidogrel on the P2Y(12) receptor and partly due to activation of the P2Y(1) receptor, which is unaffected by clopidogrel. Moreover, a correlation between increased P2Y(12) protein expression on platelets and decreased response to clopidogrel was noticed, r(2)=0.43 (P<0.05). No correlation was found between P2Y(12) mRNA levels and clopidogrel resistance, indicating post-transcriptional mechanisms. To achieve additional ADP inhibition in platelets, antagonists directed at the P2Y(1) receptor could be more promising than the development of more potent P2Y(12) receptor antagonists.
  •  
5.
  • Wihlborg, Anna-Karin, et al. (författare)
  • Positive inotropic effects by uridine triphosphate (UTP) and uridine diphosphate (UDP) via P2Y(2) and P2Y(6) receptors on cardiomyocytes and release of UTP in man during myocardial infarction
  • 2006
  • Ingår i: Circulation Research. - 0009-7330. ; 98:7, s. 970-976
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to examine a possible role for extracellular pyrimidines as inotropic factors for the heart. First, nucleotide plasma levels were measured to evaluate whether UTP is released in patients with coronary heart disease. Then, inotropic effects of pyrimidines were examined in isolated mouse cardiomyocytes. Finally, expression of pyrimidine-selective receptors ( a subgroup of the P2 receptors) was studied in human and mouse heart, using real time polymerase chain reaction, Western blot, and immunohistochemistry. Venous plasma levels of UTP were increased (57%) in patients with myocardial infarction. In electrically stimulated cardiomyocytes the stable P2Y(2/4) agonist UTP gamma S increased contraction by 52%, similar to beta(1)-adrenergic stimulation with isoproterenol (65%). The P2Y(6)-agonist UDP gamma S also increased cardiomyocyte contraction (35%), an effect abolished by the P2Y(6)-blocker MRS2578. The phospholipase C inhibitor U73122 inhibited both the UDP beta S and the UTP gamma S-induced inotropic effect, indicating an IP3-mediated effect via P2Y(6) receptors. The P2Y(14) agonist UDP-glucose was without effect. Quantification of mRNA with real time polymerase chain reaction revealed P2Y(2) as the most abundant pyrimidine receptor expressed in cardiomyocytes from man. Presence of P2Y(6) receptor mRNA was detected in both species and confirmed at protein level with Western blot and immunohistochemistry in man. In conclusion, UTP levels are increased in humans during myocardial infarction, giving the first evidence for UTP release in man. UTP is a cardiac inotropic factor most likely by activation of P2Y(2) receptors in man. For the first time we demonstrate inotropic effects of UDP, mediated by P2Y(6) receptors via an IP3-dependent pathway. Thus, the extracellular pyrimidines ( UTP and UDP) could be important inotropic factors involved in the development of cardiac disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy