SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Willén Daniel) srt2:(2020-2021)"

Sökning: WFRF:(Willén Daniel) > (2020-2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mastio, Roberto, et al. (författare)
  • Fluorescently labeled xylosides offer insight into the biosynthetic pathways of glycosaminoglycans
  • 2021
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 11:60, s. 38283-38292
  • Tidskriftsartikel (refereegranskat)abstract
    • Five novel xylosides tagged with the fluorescent probe Pacific Blue™ were synthesized and found to act as substrates for β4GalT7, a bottleneck enzyme in the biosynthetic pathways leading to glycosaminoglycans. By confocal microscopy of A549 cells, we showed that the xylosides were taken up by the cells, but did not enter the Golgi apparatus where most of the glycosaminoglycan biosynthesis occurs. Instead, after a possible double galactosylation by β4GalT7 and β3GalT6, the biosynthesis was terminated. We hypothesize this is due to the charge of the fluorescent probe, which is required for fluorescent ability and stability under physiological conditions.
  •  
2.
  • Willén, Daniel, et al. (författare)
  • Azide-Functionalized Naphthoxyloside as a Tool for Glycosaminoglycan Investigations
  • 2021
  • Ingår i: Bioconjugate Chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 32:12, s. 2507-2515
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a xylosylated naphthoxyloside carrying a terminal azide functionality that can be used for conjugation using click chemistry. We show that this naphthoxyloside serves as a substrate for β4GalT7 and induces the formation of soluble glycosaminoglycan (GAG) chains with physiologically relevant lengths and sulfation patterns. Finally, we demonstrate its usefulness by conjugation to the Alexa Fluor 647 and TAMRA fluorophores and coupling to a surface plasmon resonance chip for interaction studies with the hepatocyte growth factor known to interact with the GAG heparan sulfate.
  •  
3.
  • Willén, Daniel (författare)
  • Tools for understanding the glycosaminoglycan biosynthesis
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • For cells to function correctly within an organism, they need different systems to communicate with each other. One crucial part of cell signaling is the proteoglycans (PGs) and glycosaminoglycans (GAGs), which are macromolecules that bind different signaling molecules and proteins necessary for processes such as growth and proliferation. Therefore, PGs and GAGs are involved in pathological processes like cancer and bacterial or viral infection. A tetrasaccharide linker connects several types of GAGs to the PG core protein, with the first carbohydrate being a xylose. Xylose is, due to its scarcity in mammalian cells, an attractive target for therapeutics. In GAG biosynthesis, the enzyme β4GalT7 galactosylates the xylose. Therefore, this enzyme could be interesting to target using synthetic xylosides that could act as substrates or inhibitors. These xylosides could allow us to understand and control the biosynthesis of GAGs. This thesis is focused on the design and synthesis of modified xylosides and how we can use these as tools to study the formation of GAGs. We decided to alter the carbohydrate itself to investigate if it is possible to design effective substrates or inhibitors for β4GalT7. We also decided to modify the aglycon, the part attached to the carbohydrate, to answer questions related to how cells process GAGs. This work has resulted in several new substances that, that enter cells, and work well as substrates and inhibitors of β4GalT7 to provide answers to how GAGs are structured, how they move within the cell, and how they interact with other biomolecules such as viral proteins. The results of this work pave the way for the use of synthetic xylosides to answer several questions about GAG-related processes and open up the possibility for creating tools for influencing and studying cells' expression of GAGs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy