SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wimmer Schweingruber Robert F.) srt2:(2015-2019)"

Sökning: WFRF:(Wimmer Schweingruber Robert F.) > (2015-2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johlander, Andreas, 1990- (författare)
  • Ion dynamics and structure of collisionless shocks in space
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Shock waves form when supersonic flows encounter an obstacle. Like in regular gases, shock waves can form in a plasma - a gas of electrically charged particles. Shock waves in plasmas where collisions between particles are very rare are referred to as collisionless shock waves. Collisionless shocks are some of the most energetic plasma phenomena in the universe. They are found for example around exploded supernova remnants and in our solar system where the supersonic solar wind encounters obstacles like planets and the interstellar medium. Shock waves in plasmas are very efficient particle accelerators though a process known as diffusive shock acceleration. An example of particles accelerated in shock waves are the extremely energetic galactic cosmic rays that permeate the galaxy. This thesis addresses the physics of collisionless shocks using spacecraft observations of the Earth's bow shock, particularly understanding the ion dynamics and shock structure for different shock conditions. For this we have used data from ESA's four Cluster satellites and NASA's four Magnetospheric Multiscale (MMS) satellites. The first study presents Cluster measurements from the quasi-parallel bow shock, where the angle between the magnetic field and the shock normal is less than 45 degrees. We study the first steps of acceleration of solar wind ions at short large-amplitude magnetic structures (SLAMS). We observe nearly specularly reflected solar wind ions upstream of a SLAMS. By gyration in the solar wind, the reflected ions are accelerated to a few times the solar wind energy. The second and third study are about shock non-stationarity using MMS measurements from the quasi-perpendicular shock, where the angle between the magnetic field and the shock normal is greater than 45 degrees. In the second study we show that the shock is non-stationary in the form of ripples that propagate along the shock surface. In the third study we study closer in detail the dispersive properties of the ripples and find that whether a solar wind ion will be reflected at the shock is dependent on where it impinges on the rippled shock. In the fourth study we quantify the conditions for ion acceleration shocks by using MMS measurements from many encounters with the bow shock. We find that the quasi-parallel shock is efficient with up to 10% of the energy density in energetic ions. We also find that at quasi-parallel shocks, SLAMS can restrict high-energy ions from propagating upstream and convect them back to the shock, potentially increasing acceleration efficiency.
  •  
2.
  • Opgenoorth, Hermann J., et al. (författare)
  • Assessment and recommendations for a consolidated European approach to space weather - as part of a global space weather effort
  • 2019
  • Ingår i: Journal of Space Weather and Space Climate. - : EDP Sciences. - 2115-7251. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last 10-20 years there has been an ever-increasing international awareness of risks to modern society from adverse and potentially harmful - and in extreme cases even disastrous - space weather events. Many individual countries and even international organisations like the United Nations (UN) have begun to increase their activities in preparing for and mitigating effects of adverse space weather. As in the rest of the world there is also in Europe an urgent need for coordination of Space Weather efforts in individual countries as well as in and among European organisations such as the European Space Agency (ESA) and the European Union (EU). This coordination should not only improve our ability to meet space weather risks, but also enable Europe to contribute to on-going global space weather efforts. While space weather is a global threat, which needs a global response, it also requires tailored regional and trans-regional responses that require coordination at all levels. Commissioned by the European Space Science Committee (ESSC) of the European Science Foundation, the authors - together with ex-officio advice from ESA and the EU - have over two years assessed European activities in the realm of space weather and formulated a set of recommendations to ESA, the EU and their respective member states, about how to prepare Europe for the increasing impact of adverse space weather effects on man-made infrastructure and our society as a whole. We have also analysed parallel international activities worldwide, and we give advice how Europe could incorporate its future activities into a global scheme.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy