SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Windahl Sara H 1971) srt2:(2015-2019)"

Sökning: WFRF:(Windahl Sara H 1971) > (2015-2019)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Farman, Helen H., 1983, et al. (författare)
  • Female Mice Lacking Estrogen Receptor-alpha in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass
  • 2016
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 157:8, s. 3242-3252
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor(ER)alpha. Central ER alpha exerts an inhibitory role on bone mass. ER alpha is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ER alpha in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ER alpha expression specifically in POMC neurons (POMC-ER alpha(-/-)). Female POMC-ER alpha(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 mu g/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ER alpha(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+ 126 +/- 34%, P < .01) and mechanical strength (+ 193 +/- 38%, P <.01). To test whether ER alpha in VMN is involved in the regulation of bone mass, ER alpha was silenced using an adeno-associated viral vector. Silencing of ER alpha in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ER alpha in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ER alpha activity in hypothalamic POMC neuronsin ARC and stimulatory peripheral ER alpha-mediated effects in bone determines cortical bone mass in female mice.
  •  
2.
  • Lionikaite, Vikte, et al. (författare)
  • Clinically relevant doses of Vitamin A decrease cortical bone mass in mice
  • 2018
  • Ingår i: Journal of Endocrinology. - 0022-0795 .- 1479-6805. ; 239:3, s. 389-402
  • Tidskriftsartikel (refereegranskat)abstract
    • Excess vitamin A has been associated with decreased cortical bone thickness and increased fracture risk. While most studies in rodents have employed high dosages of vitamin A for short periods of time, we investigated the bone phenotype in mice after longer exposure to more clinically relevant doses. For 1, 4 and 10 weeks, mice were fed a control diet (4.5µg retinyl acetate/g chow), a diet modeled from the human upper tolerable limit (UTL; 20µg retinyl acetate/g chow) and a diet three times UTL (supplemented; 60µg retinyl acetate/g chow). Time-dependent decreases in periosteal circumference and bone mineral content were noted with the supplemented dose. These reductions in cortical bone resulted in a significant time-dependent decrease of predicted strength and a non-significant trend toward reduced bone strength as analyzed by three-point bending. Trabecular bone in tibiae and vertebrae remained unaffected when vitamin A was increased in the diet. Dynamic histomorphometry demonstrated that bone formation was substantially decreased after 1 week of treatment at the periosteal site with the supplemental dose. Increasing amount of vitamin A decreased endocortical circumference, resulting in decreased marrow area, a response associated with enhanced endocortical bone formation. In the presence of bisphosphonate, vitamin A had no effect on cortical bone, suggesting that osteoclasts are important, even if effects on bone resorption were not detected by osteoclast counting, genes in cortical bone or analysis of serum TRAP5b and CTX. In conclusion, our results indicate that even clinically relevant doses of vitamin A have a negative impact on the amount of cortical bone. © 2018 The authors Published by Bioscientifica Ltd.
  •  
3.
  • Farman, Helen H., 1983, et al. (författare)
  • Extra-nuclear effects of estrogen on cortical bone in males require ERαAF-1
  • 2017
  • Ingår i: Journal of Molecular Endocrinology. - 0952-5041. ; 58:2, s. 105-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Estradiol (E2) signaling via estrogen receptor alpha (ERα) is important for the male skeleton as demonstrated by ERα inactivation in both mice and man. ERα mediates estrogenic effects not only by translocating to the nucleus and affecting gene transcription but also by extra-nuclear actions e.g., triggering cytoplasmic signaling cascades. ERα contains various domains, and the role of activation function 1 (ERαAF-1) is known to be tissue specific. The aim of this study was to determine the importance of extra-nuclear estrogen effects for the skeleton in males and to determine the role of ERαAF-1 for mediating these effects. Five-month-old male wild-type (WT) and ERαAF-1-inactivated (ERαAF-10) mice were orchidectomized and treated with equimolar doses of 17β-estradiol (E2) or an estrogen dendrimer conjugate (EDC), which is incapable of entering the nucleus and thereby only initiates extra-nuclear ER actions or their corresponding vehicles for 3.5 weeks. As expected, E2 treatment increased cortical thickness and trabecular bone volume per total volume (BV/TV) in WT males. EDC treatment increased cortical thickness in WT males, whereas no effect was detected in trabecular bone. In ERαAF-10 males, E2 treatment increased cortical thickness, but did not affect trabecular bone. Interestingly, the effect of EDC on cortical bone was abolished in ERαAF-10 mice. In conclusion, extra-nuclear estrogen signaling affects cortical bone mass in males, and this effect is dependent on a functional ERαAF-1. Increased knowledge regarding estrogen signaling mechanisms in the regulation of the male skeleton may aid the development of new treatment options for male osteoporosis.
  •  
4.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • ER alpha expression in T lymphocytes is dispensable for estrogenic effects in bone
  • 2018
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 238:2, s. 129-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen treatment has positive effects on the skeleton, and we have shown that estrogen receptor alpha (ERa) expression in cells of hematopoietic origin contributes to a normal estrogen treatment response in bone tissue. T lymphocytes are implicated in the estrogenic regulation of bone mass, but it is not known whether T lymphocytes are direct estrogen target cells. Therefore, the aim of this study was to determine the importance of ERa expression in T lymphocytes for the estrogenic regulation of the skeleton using female mice lacking ERa expression specifically in T lymphocytes (Lck-ERa-/-) and ERaflox/flox littermate (control) mice. Deletion of ERa expression in T lymphocytes did not affect bone mineral density (BMD) in sham-operated Lck-ERa-/compared to control mice, and ovariectomy (ovx) resulted in a similar decrease in BMD in control and Lck-ERa-/- mice compared to sham-operated mice. Furthermore, estrogen treatment of ovx Lck-ERa-/- led to an increased BMD that was indistinguishable from the increase seen after estrogen treatment of ovx control mice. Detailed analysis of both the appendicular (femur) and axial (vertebrae) skeleton showed that both trabecular and cortical bone parameters responded to a similar extent regardless of the presence of ERa in T lymphocytes. In conclusion, ERa expression in T lymphocytes is dispensable for normal estrogenic regulation of bone mass in female mice.
  •  
5.
  • Nilsson, Maria E., et al. (författare)
  • Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive gas chromatography-tandem mass spectrometry.
  • 2015
  • Ingår i: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 156:7, s. 2492-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate measurement of sex steroid concentrations in rodent serum is essential to evaluate mouse and rat models for sex steroid-related disorders. The aim of the present study was to develop a sensitive and specific gas chromatography-tandem mass spectrometry (GC-MS/MS) method to assess a comprehensive sex steroid profile in rodent serum. A major effort was invested in reaching an exceptionally high sensitivity for measuring serum estradiol concentrations. We established a GC-MS/MS assay with a lower limit of detection for estradiol, estrone, testosterone, dihydrotestosterone, progesterone, androstenedione and dehydroepiandrosterone of 0.3, 0.5, 4, 1.6, 8, 4 and 50 pg/ml, respectively, while the corresponding values for the lower limit of quantification were 0.5, 0.5, 8, 2.5, 74, 12 and 400 pg/ml, respectively. Calibration curves were linear, intra- and inter-assay CVs were low and accuracy was excellent for all analytes. The established assay was used to accurately measure a comprehensive sex steroid profile in female rats and mice according to estrus cycle phase. In addition, we characterized the impact of age, sex, gonadectomy, and estradiol treatment on serum concentrations of these sex hormones in mice. In conclusion, we have established a highly sensitive and specific GC-MS/MS method to assess a comprehensive sex steroid profile in rodent serum in a single run. This GC-MS/MS assay has, to the best of our knowledge, the best detectability reported for estradiol. Our method therefore represents an ideal tool to characterize sex steroid metabolism in a variety of sex steroid-related rodent models and in human samples with low estradiol levels.
  •  
6.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Increased adipose tissue aromatase activity improves insulin sensitivity and reduces adipose tissue inflammation in male mice.
  • 2017
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 313:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Females are in general more insulin sensitive than males. To investigate if this is a direct effect of sex-steroids (SS) in white adipose tissue (WAT), we developed a male mouse model over expressing the aromatase enzyme, converting testosterone (T) to estradiol (E2), specifically in WAT (Ap2-arom mice). Adipose tissue E2 levels were increased while circulating SS levels were unaffected in male Ap2-arom mice. Importantly, male Ap2-arom mice were more insulin sensitive compared with WT mice and exhibited increased serum adiponectin levels and upregulated expression of Glut4 and Irs1 in WAT. The expression of markers of macrophages and immune cell infiltration was markedly decreased in WAT of male Ap2-arom mice. The adipogenesis was enhanced in male Ap2-arom mice, supported by elevated Pparg expression in WAT and enhanced differentiation of pre-adipocyte into mature adipocytes. In summary, increased adipose tissue aromatase activity reduces adipose tissue inflammation and improves insulin sensitivity in male mice. We propose that estrogen increases insulin sensitivity via a local effect in WAT on adiponectin expression, adipose tissue inflammation, and adipogenesis.
  •  
7.
  • Amzaleg, Y., et al. (författare)
  • Estrogens and selective estrogen receptor modulators differentially antagonize Runx2 in ST2 mesenchymal progenitor cells
  • 2018
  • Ingår i: Journal of Steroid Biochemistry and Molecular Biology. - : Elsevier BV. - 0960-0760 .- 1879-1220. ; 183, s. 10-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens attenuate bone turnover by inhibiting both osteoclasts and osteoblasts, in part through antagonizing Runx2. Apparently conflicting, stimulatory effects in osteoblast lineage cells, however, sway the balance between bone resorption and bone formation in favor of the latter. Consistent with this dualism, 17 beta-estradiol (E2) both stimulates and inhibits Runx2 in a locus-specific manner, and here we provide evidence for such locus specific regulation of Runx2 by E2 in vivo. We also demonstrate dual, negative and positive, regulation of Runx2-driven alkaline phosphatase (ALP) activity by increasing E2 concentrations in ST2 osteoblast progenitor cells. We further compared the effects of E2 to those of the Selective Estrogen Receptor Modulators (SERMs) raloxifene (ral) and lasofoxifene (las) and the phytoestrogen puerarin. We found that E2 at the physiological concentrations of 0.1-1 nM, as well as ral and las, but not puerarin, antagonize Runx2-driven ALP activity. At >= 10 nM, E2 and puerarin, but not ral or las, stimulate ALP relative to the activity measured at 0.1-1 nM. Contrasting the difference between E2 and SERMs in ST2 cells, they all shared a similar dose-response profile when inhibiting preosteoclast proliferation. That ral and las poorly mimic the locus-and concentration-dependent effects of E2 in mesenchymal progenitor cells may help explain their limited clinical efficacy.
  •  
8.
  • Andersson, Annica, 1983, et al. (författare)
  • Roles of activating functions 1 and 2 of estrogen receptor α in lymphopoiesis.
  • 2018
  • Ingår i: The Journal of endocrinology. - 1479-6805. ; 236:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Apart from the role of sex steroids in reproduction, sex steroids are also important regulators of the immune system. 17β-estradiol (E2) represses T and B cell development, but augments B cell function, possibly explaining the different nature of immune responses in men and women. Both E2 and selective estrogen receptors modulators (SERM) act via estrogen receptors (ER). Activating functions (AF)-1 and 2 of the ER bind to coregulators and thus influence target gene transcription and subsequent cellular response to ER activation. The importance of ERαAF-1 and AF-2 in the immunomodulatory effects of E2/SERM has previously not been reported. Thus, detailed studies of T and B lymphopoiesis were performed in ovariectomized E2-, lasofoxifene- or raloxifene-treated mice lacking either AF-1 or AF-2 domains of ERα, and their wild-type littermate controls. Immune cell phenotypes were analyzed with flow cytometry. All E2 and SERM-mediated inhibitory effects on thymus cellularity and thymic T cell development were clearly dependent on both ERαAFs. Interestingly, divergent roles of ERαAF-1 and ERαAF-2 in E2 and SERM-mediated modulation of bone marrow B lymphopoiesis were found. In contrast to E2, effects of lasofoxifene on early B cells did not require functional ERαAF-2, while ERαAF-1 was indispensable. Raloxifene reduced early B cells partly independent of both ERαAF-1 and ERαAF-2. Results from this study increase the understanding of the impact of ER modulation on the immune system, which can be useful in the clarification of the molecular actions of SERMs and in the development of new SERM.
  •  
9.
  • Bergström, I., et al. (författare)
  • Compressive loading of the murine tibia reveals site-specific micro-scale differences in adaptation and maturation rates of bone
  • 2017
  • Ingår i: Osteoporosis International. - : Springer Science and Business Media LLC. - 0937-941X .- 1433-2965. ; 28:3, s. 1121-1131
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: Loading increases bone mass and strength in a site-specific manner; however, possible effects of loading on bone matrix composition have not been evaluated. Site-specific structural and material properties of mouse bone were analyzed on the macro- and micro/molecular scale in the presence and absence of axial loading. The response of bone to load is heterogeneous, adapting at molecular, micro-, and macro-levels. Introduction: Osteoporosis is a degenerative disease resulting in reduced bone mineral density, structure, and strength. The overall aim was to explore the hypothesis that changes in loading environment result in site-specific adaptations at molecular/micro- and macro-scale in mouse bone. Methods: Right tibiae of adult mice were subjected to well-defined cyclic axial loading for 2 weeks; left tibiae were used as physiologically loaded controls. The bones were analyzed with μCT (structure), reference point indentation (material properties), Raman spectroscopy (chemical), and small-angle X-ray scattering (mineral crystallization and structure). Results: The cranial and caudal sites of tibiae are structurally and biochemically different within control bones. In response to loading, cranial and caudal sites increase in cortical thickness with reduced mineralization (−14 and −3%, p < 0.01, respectively) and crystallinity (−1.4 and −0.3%, p < 0.05, respectively). Along the length of the loaded bones, collagen content becomes more heterogeneous on the caudal site and the mineral/collagen increases distally at both sites. Conclusion: Bone structure and composition are heterogeneous, finely tuned, adaptive, and site-specifically responsive at the micro-scale to maintain optimal function. Manipulation of this heterogeneity may affect bone strength, relative to specific applied loads.
  •  
10.
  • Bergström, I., et al. (författare)
  • Prednisolone treatment reduces the osteogenic effects of loading in mice
  • 2018
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 112, s. 10-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucocorticoid treatment, a major cause of drug-induced osteoporosis and fractures, is widely used to treat inflammatory conditions and diseases. By contrast, mechanical loading increases bone mass and decreases fracture risk. With these relationships in mind, we investigated whether mechanical loading interacts with GC treatment in bone. Three-month-old female C57BL/6 mice were treated with high-dose prednisolone (15 mg/60 day pellets/mouse) or vehicle for two weeks. During the treatment, right tibiae were subjected to short periods of cyclic compressive loading three times weekly, while left tibiae were used as physiologically loaded controls. The bones were analyzed using peripheral quantitative computed tomography, histomorphometry, real-time PCR, three-point bending and Fourier transform infrared micro-spectroscopy. Loading alone increased trabecular volumetric bone mineral density (vBMD), cortical thickness, cortical area, osteoblast-associated gene expression, osteocyte- and osteoclast number, and bone strength. Prednisolone alone decreased cortical area and thickness and osteoblast-associated gene expression. Importantly, prednisolone treatment decreased the load-induced increase in trabecular vBMD by 57% (p < 0.001) and expression of osteoblast-associated genes, while completely abolishing the load-induced increase in cortical area, cortical thickness, number of osteocytes and osteoclasts, and bone strength. When combined, loading and prednisolone decreased the collagen content. In conclusion, high-dose prednisolone treatment strongly inhibits the loading-induced increase in trabecular BMD, and abolishes the loading-induced increase in cortical bone mass. This phenomenon could be due to prednisolone inhibition of osteoblast differentiation and function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (23)
bokkapitel (1)
Typ av innehåll
refereegranskat (24)
Författare/redaktör
Windahl, Sara H, 197 ... (24)
Ohlsson, Claes, 1965 (18)
Movérare-Skrtic, Sof ... (6)
Lagerquist, Marie K (5)
Vandenput, Liesbeth, ... (3)
Poutanen, Matti (3)
visa fler...
Lerner, Ulf H (3)
Carlsten, Hans, 1954 (3)
Islander, Ulrika, 19 ... (3)
Andersson, G (2)
Bergström, I. (2)
Törnqvist, Anna E (2)
Katzenellenbogen, J. ... (2)
Engdahl, Cecilia, 19 ... (2)
Kim, S. H. (1)
Xu, L. (1)
Brisby, Helena, 1965 (1)
Johansson, H (1)
West, M. (1)
Nethander, Maria, 19 ... (1)
Zhang, F. P. (1)
Dickson, Suzanne L., ... (1)
Skiöldebrand, Eva (1)
Chambon, P. (1)
Svensson, Johan, 196 ... (1)
Wilhelmson, Anna S K (1)
Hammarstedt, Ann, 19 ... (1)
Palmquist, Anders, 1 ... (1)
Gustafsson, J. A. (1)
Dahlman-Wright, K (1)
Koskela, Antti (1)
Tuukkanen, Juha (1)
Stener-Victorin, Eli ... (1)
Egecioglu, Emil, 197 ... (1)
Lindén, Daniel, 1971 (1)
Smith, Ulf, 1943 (1)
Amzaleg, Y. (1)
Ji, J. (1)
Kittivanichkul, D. (1)
Sabag, E. (1)
Khalid, A. B. (1)
Sternberg, H. (1)
Krum, S. A. (1)
Chimge, N. O. (1)
Schones, D. E. (1)
Gabet, Y. (1)
Frenkel, B. (1)
Andersson, Annica, 1 ... (1)
Grahnemo, Louise (1)
Westerlund, Anna, 19 ... (1)
visa färre...
Lärosäte
Göteborgs universitet (24)
Karolinska Institutet (13)
Umeå universitet (2)
Lunds universitet (2)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy