SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Windhorst Uwe) srt2:(2005-2007)"

Sökning: WFRF:(Windhorst Uwe) > (2005-2007)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kostyukov, Alexander I, et al. (författare)
  • Effects in feline gastrocnemius-soleus motoneurones induced by muscle fatigue.
  • 2005
  • Ingår i: Experimental Brain Research. - : Springer Science and Business Media LLC. - 0014-4819 .- 1432-1106. ; 163:3, s. 284-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Responses of gastrocnemius-soleus (G-S) motoneurones to stretches of the homonymous muscles were recorded intracellularly in decerebrate cats before, during and after fatiguing stimulation (FST) of G-S muscles. Ventral roots (VR) L7 and S1 were cut, and FST was applied to VR S1, a single FST session including 4 to 5 repetitions of 12-s periods of regular 40 s(-1) stimulation. Muscle stretches consisted of several phases of slow sinusoidal shortening-lengthening cycles and intermediate constant lengths. The maximal stretch of the muscles was 8.8 mm above the rest length. Effects of FST on excitatory postsynaptic potentials (EPSPs) and spikes evoked by the muscle stretches were studied in 12 motoneurones from ten experiments. Stretch-evoked EPSPs and firing were predominantly suppressed after FST, with the exception of a post-contraction increase of the first EPSP after FST, which was most likely due to after-effects in the activity of muscle spindle afferents. The post-fatigue suppression of EPSPs and spike activity was followed by restoration within 60-100 s. Additional bouts of FST augmented the intensity of post-fatigue suppression of EPSPs, with the spike activity sometimes disappearing completely. FST itself elicited EPSPs at latencies suggesting activation of muscle spindle group Ia afferents via stimulation of beta-fibres. The suppression of the stretch-evoked responses most likely resulted from fatigue-evoked activity of group III and IV muscle afferents. Presynaptic inhibition could be one of the mechanisms involved, but homosynaptic depression in the FST-activated group Ia afferents may also have contributed.
  •  
2.
  • Mel'nichouk, Alexander P, et al. (författare)
  • Movement-dependent positioning errors in human elbow joint movements
  • 2007
  • Ingår i: Experimental Brain Research. - : Springer Science and Business Media LLC. - 0014-4819 .- 1432-1106. ; 176:2, s. 237-247
  • Tidskriftsartikel (refereegranskat)abstract
    • Healthy adult humans performed elbow movements in a horizontal plane under a small external extending torque (2.1-3.3 Nm). Test movements (TMs) consisted of slow ramp-and-hold flexions in the absence of visual feedback, with the target joint angle to be remembered from a preceding conditioning movement (CM). The CM was produced by matching two beams on the monitor screen: (1) command representing the target position (a straight line); and (2) a signal from the sensor of the elbow joint angle. Two kinds of CM were applied, which had the same target position (50 degrees in most experiments) but differed in initial positions: (1) fully extended joint (0 degrees, P1 CMs); (2) flexed joint (100 degrees, P2 CMs). In a group of 25 subjects, the target in TMs was usually overshot, with the position errors depending on the CMs: 2.7 +/- 0.6 degree (mean +/- SEM) for P1 CMs, and 10.9 +/- 0.7 degree (P < 0.001) for P2 CMs. Vibration of the elbow flexors substantially diminished the difference between the position errors, amounting to--0.31 +/- 0.5 degree and 2.33 +/- 0.6 degrees, respectively. It is suggested that the observed position errors resulted from after-effects in the activity of muscle spindles in agonist and antagonist muscles, but influence of differences in dynamic components of the afferent signals during oppositely directed approaches to the target cannot be excluded.
  •  
3.
  • Pilyavskii, Alexander I, et al. (författare)
  • Capsaicin-induced effects on c-fos expression and NADPH-diaphorase activity in the feline spinal cord.
  • 2005
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 0014-2999 .- 1879-0712. ; 521:1-3, s. 70-78
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution of c-fos expression and NADPH-diaphorase reactivity in the cervical and lumbar segments after stimulation of the vanilloid receptors in the dorsal neck muscles with capsaicin was studied in cats anaesthetized with alpha-chloralose. After the unilateral intramuscular injection of capsaicin, the mean number of Fos-immunoreactive neurons detected with an avidin-biotin-peroxidase technique was significantly increased in the superficial laminae (I), neck of the dorsal horn (V), and area around the central canal (VII) within both the cervical and lumbar spinal cord. Most Fos-immunoreactive neurons in the cervical spinal cord were giant and small cells. The widespread distribution of Fos-immunoreactive cells throughout the cervical cord within the intermediate zone (VII) coincided with the sites of localization of last-order premotor interneurons and cells of origin of inter-segmental crossed and uncrossed descending propriospinal pathways to the lumbar spinal cord. Fos-immunoreactive neurons were co-distributed with nitric oxide-generating cells at both levels of the spinal cord, although the double-labeled cells were not observed. In conclusion, the analysis of c-fos expression and NADPH-diaphorase reactivity shows that stimulation of vanilloid receptors in the neck muscles can initiate distinctive neuronal plasticity in the cervical (C1-C8) and lumbar (L1-L7) segments, and confirms the anatomical and functional coupling of both regions during processing of nociceptive signals from the dorsal neck muscles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy