SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Winslow Luke A.) srt2:(2016)"

Sökning: WFRF:(Winslow Luke A.) > (2016)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brentrup, Jennifer A., et al. (författare)
  • The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes : an extension of the Plankton Ecology Group (PEG) model
  • 2016
  • Ingår i: Inland Waters. - 2044-2041 .- 2044-205X. ; 6:4, s. 565-580
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of high-frequency sensors on profiling buoys to investigate physical, chemical, and biological processes in lakes is increasing rapidly. Profiling buoys with automated winches and sensors that collect high-frequency chlorophyll fluorescence (ChlF) profiles in 11 lakes in the Global Lake Ecological Observatory Network (GLEON) allowed the study of the vertical and temporal distribution of ChlF, including the formation of subsurface chlorophyll maxima (SSCM). The effectiveness of 3 methods for sampling phytoplankton distributions in lakes, including (1) manual profiles, (2) single-depth buoys, and (3) profiling buoys were assessed. High-frequency ChlF surface data and profiles were compared to predictions from the Plankton Ecology Group (PEG) model. The depth-integrated ChlF dynamics measured by the profiling buoy data revealed a greater complexity that neither conventional sampling nor the generalized PEG model captured. Conventional sampling techniques would have missed SSCM in 7 of 11 study lakes. Although surface-only ChlF data underestimated average water column ChlF, at times by nearly 2-fold in 4 of the lakes, overall there was a remarkable similarity between surface and mean water column data. Contrary to the PEG model's proposed negligible role for physical control of phytoplankton during the growing season, thermal structure and light availability were closely associated with ChlF seasonal depth distribution. Thus, an extension of the PEG model is proposed, with a new conceptual framework that explicitly includes physical metrics to better predict SSCM formation in lakes and highlight when profiling buoys are especially informative.
  •  
2.
  • Read, Jordan S., et al. (författare)
  • Generating community-built tools for data sharing and analysis in environmental networks
  • 2016
  • Ingår i: Inland Waters. - 2044-2041 .- 2044-205X. ; 6:4, s. 637-644
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid data growth in many environmental sectors has necessitated tools to manage and analyze these data. The development of tools often lags behind the proliferation of data, however, which may slow exploratory opportunities and scientific progress. The Global Lake Ecological Observatory Network ( GLEON) collaborative model supports an efficient and comprehensive data-analysis-insight life cycle, including implementations of data quality control checks, statistical calculations/derivations, models, and data visualizations. These tools are community-built and openly shared. We discuss the network structure that enables tool development and a culture of sharing, leading to optimized output from limited resources. Specifically, data sharing and a flat collaborative structure encourage the development of tools that enable scientific insights from these data. Here we provide a cross-section of scientific advances derived from global-scale analyses in GLEON. We document enhancements to science capabilities made possible by the development of analytical tools and highlight opportunities to expand this framework to benefit other environmental networks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy