SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wirsenius Stefan 1963) srt2:(2005-2009)"

Sökning: WFRF:(Wirsenius Stefan 1963) > (2005-2009)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Algehed, Jessica, 1971, et al. (författare)
  • Modelling energy efficiency and carbon dioxide emissions in energy-intensive industry under stringent CO2 policies: Comparison of top-down and bottom-up approaches and evaluation of usefulness to policy makers
  • 2009
  • Ingår i: Proceedings of eceee 2009 summer study. - 9789163344541 ; , s. 1181-1191
  • Konferensbidrag (refereegranskat)abstract
    • The question of how different climate policies will influence carbon dioxide (CO2) emissions in the energy-intensive industry is complex. It is not obvious that increased costs for emitting CO2 will lead to investments in new, low-emission technologies, since the energy-intensive industry is very capital intensive, and reduced CO2 emissions beyond a certain point require large investments and possibly also radical process changes. Traditionally, either top-down or bottom-up models have been used to analyze the influence of specific policies on energy efficiency and CO2 emissions in industry. Bottom-up models describe technologies in detail, but are not realistic in their characterization of corporate decision-making, e.g., how businesses select technologies and make investments, and fail to depict macro-economic equilibrium feedbacks. Top-down models, in contrast, address these deficiencies by representing macro-economic feedbacks and by estimating parameters of technological change from observations of aggregate market responsiveness to cost changes. However, since top-down models lack technological detail, they are weak in assessing the use of new, low-emission technology. Because of these methodological differences, top-down and bottom-up models often make divergent cost predictions, and consequently suggest different policies, for meeting climate targets. This methodological divide has stimulated exploration of hybrid approaches that integrate the technological explicitness of bottom-up models with the micro-economic realism and macro-economic feedbacks of top-down models. To better understand the dynamics and policy responses of industry, such methods and models need to be further developed and applied. In this paper we analyse and compare top-down, bottom-up, and integrated (hybrid) approaches that have been used for evaluating potentials for CO2 emissions reductions and CO2 policy analysis in energy-intensive industry. We also evaluate the usefulness of these approaches and models to policy and decision makers.
  •  
2.
  • Berndes, Göran, 1966, et al. (författare)
  • Biomassa - en knapp resurs i globalt perspektiv
  • 2007
  • Ingår i: Bioenergi - till vad och hur mycket?. ; :Formas Fokuserar, s. 19-32
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Idag använder vi ungefär tio gånger mer fossil energi än bioenergi i världen. Nu ökar användningen av bioenergi kraftigt. Men globalt sett finns det inte tillräckligt med bioenergi för att ersätta de fossila bränslena, skriver tre forskare på Chalmers. Hur ska vi använda de knappa resurserna på bästa sätt? Och hur ska vi kunna begränsa de negativa effekter som ökad efterfrågan på bioenergi kan få? Det handlar bland annat om exploatering av värdefulla ekosystem som regnskogar.
  •  
3.
  •  
4.
  •  
5.
  • Wirsenius, Stefan, 1963 (författare)
  • Global Use of Agricultural Biomass for Food and Non-Food Purposes: Current Situation and Future Outlook
  • 2007
  • Ingår i: Proceedings of Traditional grains for low environmental impact and good health.
  • Konferensbidrag (refereegranskat)abstract
    • Globally, humans currently use roughly 13 petagrams (billion metric tons) dry matter per year of biomass for food (incl. feed), energy and materials purposes. In energy terms, this use corresponds to about 240 exajoules (~5.7 billion metric ton oil eq.), and is almost of the same order of magnitude as the current use of all fossil fuels, in total 390 exajoules. Agricultural biomass from cropland and permanent pasture for food is by far the largest category, accounting for about 85 percent of total human biomass use. Non-food use of agricultural biomass is relatively small, in total around 0.5-1 petagram, and consists mainly of by-products and residues from agriculture and food industry used for energy purposes, and to some extent also materials purposes. Crops dedicated for materials (e.g. fiber) or energy (e.g. fuels) purposes grown on agricultural land is in comparison almost negligible, reaching about 0.2-0.3 petagrams. However, in the coming decades, production of dedicated energy and materials crops is likely to rise substantially, at a faster rate than conventional food crops. This applies in particular to energy crops, since the potential future demand for bioenergy is much larger than for biomaterials. If stringent (i.e. low CO2 emissions) climate policies are implemented, energy crops production is likely to increase considerably, and may reach orders of magnitude of around ~5 petagrams or more.
  •  
6.
  • Wirsenius, Stefan, 1963, et al. (författare)
  • Klimatmärkning kan leda helt fel
  • 2008
  • Ingår i: Göteborgsposten.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy