SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Woodbridge Jessie) srt2:(2019)"

Search: WFRF:(Woodbridge Jessie) > (2019)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Finné, Martin, 1981-, et al. (author)
  • Holocene hydro-climatic variability in the Mediterranean : A synthetic multi-proxy reconstruction
  • 2019
  • In: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 29:5, s. 847-863
  • Journal article (peer-reviewed)abstract
    • Here we identify and analyze proxy data interpreted to reflect hydro-climatic variability over the last 10,000 years from the Mediterranean region to (1) outline millennial and multi-centennial-scale trends and (2) identify regional patterns of hydro-climatic variability. A total of 47 lake, cave, and marine records were transformed to z-scores to allow direct comparisons between sites, put on a common time scale, and binned into 200-year time slices. Six different regions were identified based on numerical and spatial analyzes of z-scores: S Iberia and Maghreb, N Iberia, Italy, the Balkans, Turkey, and the Levant, and the overall hydro-climate history of each region was reconstructed. N Iberia is largely decoupled from the five other regions throughout the Holocene. Wetter conditions occur in the five other regions between 8500 and 6100 yr BP. After 6000 yr BP, climate oscillated until around 3000 ± 300 yr BP, which seems to have been the overall driest period in the eastern Mediterranean and North Africa. In contrast, Italy and N Iberia seem to have remained wetter during this period. In addition, non-metric multidimensional scaling (nMDS) was applied to 18 long, continuous climate z-score records that span the majority of the Holocene. nMDS axes 1 and 2 illustrate the main trends in the z-score data. The first axis captures a long-term development of drier condition in the Mediterranean from 7900 to 3700 yr BP. Rapid shifts occur in nMDS axis 2 at 6700–6300 BP, 4500–4300 BP, and 3500–3300 BP indicating centennial-scale climate change. Our synthesis highlights a dominant south/east versus north/west Mediterranean hydro-climate dipole throughout the Holocene and therefore confirms that there was no single climate trajectory characterizing the whole Mediterranean basin during the last 10 millennia.
  •  
2.
  • Walsh, Kevin, et al. (author)
  • Holocene demographic fluctuations, climate and erosion in the Mediterranean : A meta data-analysis
  • 2019
  • In: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 29:5, s. 864-885
  • Journal article (peer-reviewed)abstract
    • As part of the Changing the Face of the Mediterranean Project, we consider how human pressure and concomitant erosion has affected a range of Mediterranean landscapes between the Neolithic and, in some cases, the post-medieval period. Part of this assessment comprises an investigation of relationships among palaeodemographic data, evidence for vegetation change and some consideration of rapid climate change events. The erosion data include recent or hitherto unpublished work from the authors. Where possible, we consider summed probabilities of 14C dates as well as the first published synthesis of all known optically stimulated luminescence dated sequences. The results suggest that while there were some periods when erosion took place contemporaneously across a number of regions, possibly induced by climate changes, more often than not, we see a complex and heterogeneous interplay of demographic and environmental changes that result in a mixed pattern of erosional activity across the Mediterranean.
  •  
3.
  • Weiberg, Erika, 1971-, et al. (author)
  • Long-term trends of land use and demography in Greece : A comparative study
  • 2019
  • In: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 29:5, s. 742-760
  • Journal article (peer-reviewed)abstract
    • This paper offers a comparative study of land use and demographic development in northern and southern Greece from the Neolithic to the Byzantine period. Results from summed probability densities (SPD) of archaeological radiocarbon dates and settlement numbers derived from archaeological site surveys are combined with results from cluster-based analysis of published pollen core assemblages to offer an integrated view of human pressure on the Greek landscape through time. We demonstrate that SPDs offer a useful approach to outline differences between regions and a useful complement to archaeological site surveys, evaluated here especially for the onset of the Neolithic and for the Final Neolithic (FN)/Early Bronze Age (EBA) transition. Pollen analysis highlight differences in vegetation between the two sub-regions, but also several parallel changes. The comparison of land cover dynamics between two sub-regions of Greece further demonstrates the significance of the bioclimatic conditions of core locations and that apparent oppositions between regions may in fact be two sides of the same coin in terms of socio-ecological trajectories. We also assess the balance between anthropogenic and climate-related impacts on vegetation and suggest that climatic variability was as an important factor for vegetation regrowth. Finally, our evidence suggests that the impact of humans on land cover is amplified from the Late Bronze Age (LBA) onwards as more extensive herding and agricultural practices are introduced.
  •  
4.
  • Woodbridge, Jessie, et al. (author)
  • Pollen-inferred regional vegetation patterns and demographic change in Southern Anatolia through the Holocene
  • 2019
  • In: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 29:5, s. 728-741
  • Journal article (peer-reviewed)abstract
    • Southern Anatolia is a highly significant area within the Mediterranean, particularly in terms of understanding how agriculture moved into Europe from neighbouring regions. This study uses pollen, palaeoclimate and archaeological evidence to investigate the relationships between demography and vegetation change, and to explore how the development of agriculture varied spatially. Data from 21 fossil pollen records have been transformed into forested, parkland and open vegetation types using cluster analysis. Patterns of change have been explored using non-metric multidimensional scaling (nMDS) and through analysis of indicator groups, such as an Anthropogenic Pollen Index, and Simpson’s Diversity. Settlement data, which indicate population densities, and summed radiocarbon dates for archaeological sites have been used as a proxy for demographic change. The pollen and archaeological records confirm that farming can be detected earlier in Anatolia in comparison with many other parts of the Mediterranean. Dynamics of change in grazing indicators and the OJCV (Olea, Juglans, Castanea and Vitis) index for cultivated trees appear to match cycles of population expansion and decline. Vegetation and land use change is also influenced by other factors, such as climate change. Investigating the early impacts of anthropogenic activities (e.g. woodcutting, animal herding, the use of fire and agriculture) is key to understanding how societies have modified the environment since the mid–late Holocene, despite the capacity of ecological systems to absorb recurrent disturbances. The results of this study suggest that shifting human population dynamics played an important role in shaping land cover in central and southern Anatolia.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view