SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Woodham A) srt2:(2021)"

Sökning: WFRF:(Woodham A) > (2021)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  • D'Amicis, R., et al. (författare)
  • First Solar Orbiter observation of the Alfvenic slow wind and identification of its solar source
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Turbulence dominated by large-amplitude, nonlinear Alfven-like fluctuations mainly propagating away from the Sun is ubiquitous in high-speed solar wind streams. Recent studies have demontrated that slow wind streams may also show strong Alfvenic signatures, especially in the inner heliosphere.Aims. The present study focuses on the characterisation of an Alfvenic slow solar wind interval observed by Solar Orbiter between 14 and 18 July 2020 at a heliocentric distance of 0.64 AU.Methods. Our analysis is based on plasma moments and magnetic field measurements from the Solar Wind Analyser (SWA) and Magnetometer (MAG) instruments, respectively. We compared the behaviour of different parameters to characterise the stream in terms of the Alfvenic content and magnetic properties. We also performed a spectral analysis to highlight spectral features and waves signature using power spectral density and magnetic helicity spectrograms, respectively. Moreover, we reconstruct the Solar Orbiter magnetic connectivity to the solar sources both via a ballistic and a potential field source surface (PFSS) model.Results. The Alfvenic slow wind stream described in this paper resembles, in many respects, a fast wind stream. Indeed, at large scales, the time series of the speed profile shows a compression region, a main portion of the stream, and a rarefaction region, characterised by different features. Moreover, before the rarefaction region, we pinpoint several structures at different scales recalling the spaghetti-like flux-tube texture of the interplanetary magnetic field. Finally, we identify the connections between Solar Orbiter in situ measurements, tracing them down to coronal streamer and pseudostreamer configurations.Conclusions. The characterisation of the Alfvenic slow wind stream observed by Solar Orbiter and the identification of its solar source are extremely important aspects for improving the understanding of future observations of the same solar wind regime, especially as solar activity is increasing toward a maximum, where a higher incidence of this solar wind regime is expected.
  •  
5.
  • Telloni, D., et al. (författare)
  • Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage Observations and modeling
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft.Aims. This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7-8, 2020, from both an observational and a modeling perspective. The aim is to provide a full description of those events, their mutual interaction, and their coupling with the ambient solar wind and the HCS.Methods. Data acquired by the MAG magnetometer, the Energetic Particle Detector suite, and the Radio and Plasma Waves instrument are used to provide information on the ICMEs' magnetic topology configuration, their magnetic connectivity to the Sun, and insights into the heliospheric plasma environment where they travel, respectively. On the modeling side, the Heliospheric Upwind eXtrapolation model, the 3D COronal Rope Ejection technique, and the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) tool are used to complement Solar Orbiter observations of the ambient solar wind and ICMEs, and to simulate the evolution and interaction of the ejecta in the inner heliosphere, respectively.Results. Both data analysis and numerical simulations indicate that the passage of two distinct, dynamically and magnetically interacting (via magnetic reconnection processes) ICMEs at Solar Orbiter is a possible scenario, supported by the numerous similarities between EUHFORIA time series at Solar Orbiter and Solar Orbiter data.Conclusions. The combination of in situ measurements and numerical simulations (together with remote sensing observations of the corona and inner heliosphere) will significantly lead to a deeper understanding of the physical processes occurring during the CME-CME interaction.
  •  
6.
  • Matteini, L., et al. (författare)
  • Solar Orbiter's encounter with the tail of comet C/2019 Y4 (ATLAS) : Magnetic field draping and cometary pick-up ion waves
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar Orbiter is expected to have flown close to the tail of comet C/2019 Y4 (ATLAS) during the spacecraft’s first perihelion in June 2020. Models predict a possible crossing of the comet tails by the spacecraft at a distance from the Sun of approximately 0.5 AU.Aims. This study is aimed at identifying possible signatures of the interaction of the solar wind plasma with material released by comet ATLAS, including the detection of draped magnetic field as well as the presence of cometary pick-up ions and of ion-scale waves excited by associated instabilities. This encounter provides us with the first opportunity of addressing such dynamics in the inner Heliosphere and improving our understanding of the plasma interaction between comets and the solar wind.Methods. We analysed data from all in situ instruments on board Solar Orbiter and compared their independent measurements in order to identify and characterize the nature of structures and waves observed in the plasma when the encounter was predicted.Results. We identified a magnetic field structure observed at the start of 4 June, associated with a full magnetic reversal, a local deceleration of the flow and large plasma density, and enhanced dust and energetic ions events. The cross-comparison of all these observations support a possible cometary origin for this structure and suggests the presence of magnetic field draping around some low-field and high-density object. Inside and around this large scale structure, several ion-scale wave-forms are detected that are consistent with small-scale waves and structures generated by cometary pick-up ion instabilities.Conclusions. Solar Orbiter measurements are consistent with the crossing through a magnetic and plasma structure of cometary origin embedded in the ambient solar wind. We suggest that this corresponds to the magnetotail of one of the fragments of comet ATLAS or to a portion of the tail that was previously disconnected and advected past the spacecraft by the solar wind.
  •  
7.
  • Telloni, Daniele, et al. (författare)
  • Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter-Parker Solar Probe Quadrature
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 920:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This Letter addresses the first Solar Orbiter (SO)-Parker Solar Probe (PSP) quadrature, occurring on 2021 January 18 to investigate the evolution of solar wind from the extended corona to the inner heliosphere. Assuming ballistic propagation, the same plasma volume observed remotely in the corona at altitudes between 3.5 and 6.3 solar radii above the solar limb with the Metis coronagraph on SO can be tracked to PSP, orbiting at 0.1 au, thus allowing the local properties of the solar wind to be linked to the coronal source region from where it originated. Thanks to the close approach of PSP to the Sun and the simultaneous Metis observation of the solar corona, the flow-aligned magnetic field and the bulk kinetic energy flux density can be empirically inferred along the coronal current sheet with an unprecedented accuracy, allowing in particular estimation of the Alfven radius at 8.7 solar radii during the time of this event. This is thus the very first study of the same solar wind plasma as it expands from the sub-Alfvenic solar corona to just above the Alfven surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy