SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wuensch E.) srt2:(2015-2017)"

Sökning: WFRF:(Wuensch E.) > (2015-2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Payer, Stefan E., et al. (författare)
  • Regioselective para-Carboxylation of Catechols with a Prenylated Flavin Dependent Decarboxylase
  • 2017
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 56:44, s. 13893-13897
  • Tidskriftsartikel (refereegranskat)abstract
    • The utilization of CO2 as a carbon source for organic synthesis meets the urgent demand for more sustainability in the production of chemicals. Herein, we report on the enzyme-catalyzed para-carboxylation of catechols, employing 3,4-dihydroxybenzoic acid decarboxylases (AroY) that belong to the UbiD enzyme family. Crystal structures and accompanying solution data confirmed that AroY utilizes the recently discovered prenylated FMN (prFMN) cofactor, and requires oxidative maturation to form the catalytically competent prFMN(iminium) species. This study reports on the in vitro reconstitution and activation of a prFMN-dependent enzyme that is capable of directly carboxylating aromatic catechol substrates under ambient conditions. A reaction mechanism for the reversible decarboxylation involving an intermediate with a single covalent bond between a quinoid adduct and cofactor is proposed, which is distinct from the mechanism of prFMN-associated 1,3-dipolar cycloadditions in related enzymes.
  •  
2.
  • Hoefig, CS, et al. (författare)
  • Biosynthesis of 3-Iodothyronamine From T4 in Murine Intestinal Tissue
  • 2015
  • Ingår i: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 156:11, s. 4356-4364
  • Tidskriftsartikel (refereegranskat)abstract
    • The endogenous metabolite 3-iodothyronamine (3-T1AM) induces strong hypothermia and bradycardia at pharmacological doses. Although its biosynthesis from thyroid hormone precursors appears likely, the sequence and sites of reactions are still controversial: studies in T4-substituted thyroid cancer patients lacking functional thyroid tissue suggested extrathyroidal 3-T1AM production, whereas studies using labeled T4 in mice indicated intrathyroidal formation. However, because the patients received T4 orally, whereas the mice were injected ip, we hypothesized that 3-T1AM synthesis requires the intestinal passage of T4. Using the everted gut sac model in combination with mass spectrometry, we demonstrate 3-T1AM production from T4 in mouse intestine via several deiodination and decarboxylation steps. Gene expression analysis confirmed the expression of all 3 deiodinases as well as ornithine decarboxylase (ODC) in intestine. Subsequent experiments employing purified human ODC revealed that this enzyme can in fact mediate decarboxylation of 3,5-T2 and T4 to the respective thyronamines (TAMs), demonstrating that the intestine expresses the entire molecular machinery required for 3-T1AM biosynthesis. Interestingly, TAM production was strongly affected by the antithyroid treatment methimazole and perchlorate independently of thyroid status, limiting the validity of the respective mouse models in this context. Taken together, our data demonstrate intestinal 3-T1AM biosynthesis from T4 involving decarboxylation through ODC with subsequent deiodination, and explain the apparent discrepancy between 3-T1AM serum levels in patients substituted orally and mice injected ip with T4. Identifying ODC as the first enzyme capable of decarboxylating thyroid hormone, our findings open the path to further investigations of TAM metabolism on molecular and cellular levels.
  •  
3.
  • Payer, Stefan E., et al. (författare)
  • Exploring the Catalytic Promiscuity of Phenolic Acid Decarboxylases : Asymmetric, 1,6-Conjugate Addition of Nucleophiles Across 4-Hydroxystyrene
  • 2017
  • Ingår i: Advanced Synthesis and Catalysis. - : Wiley. - 1615-4150 .- 1615-4169. ; 359:12, s. 2066-2075
  • Tidskriftsartikel (refereegranskat)abstract
    • The catalytic promiscuity of a ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) and phenolic acid decarboxylases (PADs) for the asymmetric conjugate addition of water across the C=C bond of hydroxystyrenes was extended to the N-, C-and S-nucleophiles methoxyamine, cyanide and propanethiol to furnish the corresponding addition products in up to 91% ee. The products obtained from the biotransformation employing the most suitable enzyme/nucleophile pairs were isolated and characterized after optimizing the reaction conditions. Finally, a mechanistic rationale supported by quantum mechanical calculations for the highly (S)selective addition of cyanide is proposed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy