SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wunderling Nico) ;srt2:(2020)"

Sökning: WFRF:(Wunderling Nico) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krönke, Jonathan, et al. (författare)
  • Dynamics of tipping cascades on complex networks
  • 2020
  • Ingår i: Physical review. E. - 2470-0045 .- 2470-0053. ; 101:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Tipping points occur in diverse systems in various disciplines such as ecology, climate science, economy, and engineering. Tipping points are critical thresholds in system parameters or state variables at which a tiny perturbation can lead to a qualitative change of the system. Many systems with tipping points can be modeled as networks of coupled multistable subsystems, e.g., coupled patches of vegetation, connected lakes, interacting climate tipping elements, and multiscale infrastructure systems. In such networks, tipping events in one subsystem are able to induce tipping cascades via domino effects. Here, we investigate the effects of network topology on the occurrence of such cascades. Numerical cascade simulations with a conceptual dynamical model for tipping points are conducted on Erdos-Renyi, Watts-Strogatz, and Barabasi-Albert networks. Additionally, we generate more realistic networks using data from moisture-recycling simulations of the Amazon rainforest and compare the results to those obtained for the model networks. We furthermore use a directed configuration model and a stochastic block model which preserve certain topological properties of the Amazon network to understand which of these properties are responsible for its increased vulnerability. We find that clustering and spatial organization increase the vulnerability of networks and can lead to tipping of the whole network. These results could be useful to evaluate which systems are vulnerable or robust due to their network topology and might help us to design or manage systems accordingly.
  •  
2.
  • Wunderling, Nico, et al. (författare)
  • Basin stability and limit cycles in a conceptual model for climate tipping cascades
  • 2020
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 22:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Tipping elements in the climate system are large-scale subregions of the Earth that might possess threshold behavior under global warming with large potential impacts on human societies. Here, we study a subset of five tipping elements and their interactions in a conceptual and easily extendable framework: the Greenland Ice Sheets (GIS) and West Antarctic Ice Sheets, the Atlantic meridional overturning circulation (AMOC), the El-Nino Southern Oscillation and the Amazon rainforest. In this nonlinear and multistable system, we perform a basin stability analysis to detect its stable states and their associated Earth system resilience. By combining these two methodologies with a large-scale Monte Carlo approach, we are able to propagate the many uncertainties associated with the critical temperature thresholds and the interaction strengths of the tipping elements. Using this approach, we perform a system-wide and comprehensive robustness analysis with more than 3.5 billion ensemble members. Further, we investigate dynamic regimes where some of the states lose stability and oscillations appear using a newly developed basin bifurcation analysis methodology. Our results reveal that the state of four or five tipped elements has the largest basin volume for large levels of global warming beyond 4 degrees C above pre-industrial climate conditions, representing a highly undesired state where a majority of the tipping elements reside in the transitioned regime. For lower levels of warming, states including disintegrated ice sheets on west Antarctica and Greenland have higher basin volume than other state configurations. Therefore in our model, we find that the large ice sheets are of particular importance for Earth system resilience. We also detect the emergence of limit cycles for 0.6% of all ensemble members at rare parameter combinations. Such limit cycle oscillations mainly occur between the GIS and AMOC (86%), due to their negative feedback coupling. These limit cycles point to possibly dangerous internal modes of variability in the climate system that could have played a role in paleoclimatic dynamics such as those unfolding during the Pleistocene ice age cycles.
  •  
3.
  • Wunderling, Nico, et al. (författare)
  • How motifs condition critical thresholds for tipping cascades in complex networks : Linking micro- to macro-scales
  • 2020
  • Ingår i: Chaos. - : AIP Publishing. - 1054-1500 .- 1089-7682. ; 30:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigate how specific micro-interaction structures (motifs) affect the occurrence of tipping cascades on networks of stylized tipping elements. We compare the properties of cascades in Erdos-Renyi networks and an exemplary moisture recycling network of the Amazon rainforest. Within these networks, decisive small-scale motifs are the feed forward loop, the secondary feed forward loop, the zero loop, and the neighboring loop. Of all motifs, the feed forward loop motif stands out in tipping cascades since it decreases the critical coupling strength necessary to initiate a cascade more than the other motifs. We find that for this motif, the reduction of critical coupling strength is 11% less than the critical coupling of a pair of tipping elements. For highly connected networks, our analysis reveals that coupled feed forward loops coincide with a strong 90% decrease in the critical coupling strength. For the highly clustered moisture recycling network in the Amazon, we observe regions of a very high motif occurrence for each of the four investigated motifs, suggesting that these regions are more vulnerable. The occurrence of motifs is found to be one order of magnitude higher than in a random Erdos-Renyi network. This emphasizes the importance of local interaction structures for the emergence of global cascades and the stability of the network as a whole.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy