SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu Haibo) srt2:(2023)"

Sökning: WFRF:(Xu Haibo) > (2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Xiansheng, et al. (författare)
  • A Multifunctional Small-Molecule Hole- Transporting Material Enables Perovskite QLEDs with EQE Exceeding 20%
  • 2023
  • Ingår i: ACS Energy Letters. - : AMER CHEMICAL SOC. - 2380-8195. ; 8:3, s. 1445-1454
  • Tidskriftsartikel (refereegranskat)abstract
    • Hole-transporting materials (HTMs) play critical roles in the device performance and stability of perovskite quantum dot light-emitting diodes (Pe-QLEDs). However, the development of small-molecule HTMs for achieving high-performance Pe-QLEDs has proven to be very challenging because of their low hole mobility and poor solvent resistance. Herein, we tailor-made a multifunc-tional small-molecule HTM, termed X10, with methoxy as the substituents, for application in Pe-QLEDs. X10 features high hole mobility, good film-forming ability, and strong solvent resistance ability as well as defect passivation effect. Subsequently, Pe-QLEDs employing X10 as HTM presented a promising external quantum efficiency (EQE) of 20.18%, which is 7-fold higher than that of the reference HTM-TCTA-based ones (EQE approximate to 2.88%). To the best of our knowledge, this is the first case in which a small-molecule HTM displays a high EQE over 20% in Pe-QLEDs. Our work provides important guidance for the rational design of multifunctional small-molecule HTMs for high-performance Pe-QLEDs.
  •  
2.
  • Xiong, Yan, et al. (författare)
  • Small molecule Z363 co-regulates TAF10 and MYC via the E3 ligase TRIP12 to suppress tumour growth
  • 2023
  • Ingår i: CLINICAL AND TRANSLATIONAL MEDICINE. - : JOHN WILEY & SONS LTD. - 2001-1326. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe MYC oncoprotein, also known as the master regulator of genes, is a transcription factor that regulates numerous physiological processes, including cell cycle control, apoptosis, protein synthesis and cell adhesion, among others. MYC is overexpressed in approximately 70% of human cancers. Given its pervasive role in cancer biology, MYC down-regulation has become an attractive cancer treatment strategy. MethodsThe CRISPR/Cas9 method was used to produce KO cell models. Western blot was used to analyzed the expressions of MYC and TATA-binding proteinassociated factors 10 (TAF10) in cancer cells (MCF7, A549, HepG2 cells) Cell culture studies were performed to determine the mechanisms by which small molecules (Z363119456, Z363) affects MYC and TAF10 expressions and functions. Mouse studies were carried out to investigate the impact of Z363 regulation on tumor growth. ResultsZ363 activate Thyroid hormone Receptor-interacting Protein 12 (TRIP12), which phosphorylates MYC at Thr58, resulting in MYC ubiquitination and degradation and thereby regulating MYC target genes. Importantly, TRIP12 also induces TAF10 degradation, which reduces MYC protein levels. TRIP12, an E3 ligase, controls MYC levels both directly and indirectly by inhibiting MYC or TAF10 activity. ConclusionsIn summary,these results demonstrate the anti-cancer properties of Z363, a small molecule that is co-regulated by TAF10 and MYC.
  •  
3.
  • Xu, Xiaoran, et al. (författare)
  • Applications of Boron Cluster Supramolecular Frameworks as Metal-Free Chemodynamic Therapy Agents for Melanoma
  • 2023
  • Ingår i: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829.
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemodynamic therapy (CDT) is a highly targeted approach to treat cancer since it converts hydrogen peroxide into harmful hydroxyl radicals (OH & BULL;) through Fenton or Fenton-like reactions. However, the systemic toxicity of metal-based CDT agents has limited their clinical applications. Herein, a metal-free CDT agent: 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12H12]2-(TPT@ B12H12) is reported. Compared to the traditional metal-based CDT agents, TPT@B12H12 is free of metal avoiding cumulative toxicity during long-term therapy. Density functional theory (DFT) calculation revealed that TPT@B12H12 decreased the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. Mechanismly, the theory calculation indicated that both [B12H12]-& BULL; and [TPT-H]2+ have the capacity to decompose hydrogen into 1O2, OH & BULL;, and O2-& BULL;. With electron paramagnetic resonance and fluorescent probes, it is confirmed that TPT@B12H12 increases the levels of 1O2, OH & BULL;, and O2-& BULL;. More importantly, TPT@B12H12 effectively suppress the melanoma growth both in vitro and in vivo through 1O2, OH & BULL;, and O2-& BULL; generation. This study specifically highlights the great clinical translational potential of TPT@B12H12 as a CDT reagent. 2,4,6-Tri(4-pyridyl)-1,3,5-triazine (TPT)/ [closo-B12H12]2-(TPT@B12H12), a metal-free chemodynamic therapy (CDT) agent, decreases the activation barrier more than 3.5 times being a more effective catalyst than the Fe2+ ion (the Fenton reaction), which decreases the barrier about twice. More importantly, TPT@B12H12 effectively suppress the melanoma growth both in vitro and in vivo through 1O2, OH & BULL;, and O2-& BULL; generation. image
  •  
4.
  • Yuan, Shichen, et al. (författare)
  • Balancing Charge Injection via a Tailor-Made Electron-Transporting Material for High Performance Blue Perovskite QLEDs
  • 2023
  • Ingår i: ACS Energy Letters. - : AMER CHEMICAL SOC. - 2380-8195. ; 8:1, s. 818-826
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the great challenges in perovskite quantum dot light-emitting diodes (Pe-QLEDs) is the unbalanced charge injection that significantly hinders the device performance and stability. Herein, we tailor-made a high mobility electron-transporting material (ETM), named B2, to balance the carrier injection in blue Pe-QLEDs. B2 with a tailored asymmetric anthracenyl structure exhibits a promising electron mobility of 2.7 x 10(-4) cm(2)center dot V-1 center dot s(-1), which is almost 20 times higher than the commonly used ETM-TPBi (1.1 x 10(-5) cm(2)center dot V-1 center dot s(-1)). Subsequently, sky blue (490 nm) Pe-QLED with B2 as the ETM presented a remarkably high external quantum efficiency (EQE) of 13.17% and a low turn-on voltage of 2.2 V, which is much better than that of the TPBi-based device (EQE of 8.31% and Vturn-on of 3.2 V). In addition, B2 also demonstrated a universal application in green and deep blue Pe-QLEDs. This work provides an important guidance to rational design of high electron mobility ETMs for high-performance LEDs.
  •  
5.
  • Zhang, Lixiu, et al. (författare)
  • Advances in the Application of Perovskite Materials
  • 2023
  • Ingår i: NANO-MICRO LETTERS. - : SHANGHAI JIAO TONG UNIV PRESS. - 2311-6706. ; 15:1
  • Forskningsöversikt (refereegranskat)abstract
    • Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy