SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yancopoulou D) "

Sökning: WFRF:(Yancopoulou D)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brown, J, et al. (författare)
  • Frontotemporal dementia linked to chromosome 3
  • 2004
  • Ingår i: Dementia and Geriatric Cognitive Disorders. - : S. Karger AG. - 1420-8008 .- 1421-9824. ; 17:4, s. 274-276
  • Tidskriftsartikel (refereegranskat)abstract
    • A large pedigree with autosomal dominant frontotemporal dementia has been identified. Positional cloning has linked the disease gene to the pericentromeric region of chromosome 3. Clinical, neuropsychological, imaging, pathological and molecular genetic data are presented. The genetic mutation responsible for the disease has not been identified.
  •  
2.
  • Gydesen, S, et al. (författare)
  • Chromosome 3 linked frontotemporal dementia (FTD-3)
  • 2002
  • Ingår i: Neurology. - 1526-632X. ; 59:10, s. 1585-1594
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The authors have identified and studied a large kindred in which frontotemporal dementia (FTD) is inherited as an autosomal dominant trait. The trait has been mapped to the pericentromeric region of chromosome 3. Methods: The authors report on the clinical, neuroimaging, neuropsychological, and pathologic features in this unique pedigree collected during 17 years of study. Results: Twenty-two individuals in three generations have been affected; the age at onset varies between 46 and 65 years. The disease presents with a predominantly frontal lobe syndrome but there is also evidence for temporal and dominant parietal lobe dysfunction. Late in the illness individuals develop a florid motor syndrome with pyramidal and extrapyramidal features. Structural imaging reveals generalized cerebral atrophy; H-2 O-15-PET scanning in two individuals relatively early and late in the disease shows a striking global reduction in cerebral blood flow affecting all lobes. On macroscopic pathologic examination, there is generalized cerebral atrophy affecting the frontal lobes preferentially. Microscopically, there is neuronal loss and gliosis without specific histopathologic features. Conclusions: FTD-3 shares clinical and pathologic features with other forms of FTD and fulfills international consensus criteria for FTD. There is involvement of the parietal lobes clinically, radiologically, and pathologically in FTD-3 in contrast to some forms of FTD. This more diffuse involvement of the cerebral cortex leads to a distinctive, global pattern of reduced blood flow on PET scanning.
  •  
3.
  • Mannes, Marco, et al. (författare)
  • Complement C3 activation in the ICU : Disease and therapy as Bonnie and Clyde
  • 2022
  • Ingår i: Seminars in Immunology. - : Elsevier. - 1044-5323 .- 1096-3618. ; 60
  • Forskningsöversikt (refereegranskat)abstract
    • Patients in the intensive care unit (ICU) often straddle the divide between life and death. Understanding the complex underlying pathomechanisms relevant to such situations may help intensivists select broadly acting treatment options that can improve the outcome for these patients. As one of the most important defense mechanisms of the innate immune system, the complement system plays a crucial role in a diverse spectrum of diseases that can necessitate ICU admission. Among others, myocardial infarction, acute lung injury/acute respiratory distress syndrome (ARDS), organ failure, and sepsis are characterized by an inadequate complement response, which can potentially be addressed via promising intervention options. Often, ICU monitoring and existing treatment options rely on massive intervention strategies to maintain the function of vital organs, and these approaches can further contribute to an unbalanced complement response. Artificial surfaces of extracorporeal organ support devices, transfusion of blood products, and the application of anticoagulants can all trigger or amplify undesired complement activation. It is, therefore, worth pursuing the evaluation of complement inhibition strategies in the setting of ICU treatment. Recently, clinical studies in COVID-19-related ARDS have shown promising effects of central inhibition at the level of C3 and paved the way for prospective investigation of this approach. In this review, we highlight the fundamental and often neglected role of complement in the ICU, with a special focus on targeted complement inhibition. We will also consider complement substitution therapies to temporarily counteract a disease/treatment-related complement consumption.
  •  
4.
  • Mastellos, Dimitrios C., et al. (författare)
  • Complement C3 vs C5 inhibition in severe COVID-19 : Early clinical findings reveal differential biological efficacy
  • 2020
  • Ingår i: Clinical Immunology. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 1521-6616 .- 1521-7035. ; 220
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.
  •  
5.
  • Mastellos, Dimitrios C., et al. (författare)
  • Compstatin : a C3-targeted complement inhibitor reaching its prime for bedside intervention
  • 2015
  • Ingår i: European Journal of Clinical Investigation. - : Wiley. - 0014-2972 .- 1365-2362. ; 45:4, s. 423-440
  • Forskningsöversikt (refereegranskat)abstract
    • There is a growing awareness that complement plays an integral role in human physiology and disease, transcending its traditional perception as an accessory system for pathogen clearance and opsonic cell killing. As the list of pathologies linked to dysregulated complement activation grows longer, it has become clear that targeted modulation of this innate immune system opens new windows of therapeutic opportunity for anti-inflammatory drug design. Indeed, the introduction of the first complement-targeting drugs has reignited a vibrant interest in the clinical translation of complement-based inhibitors. Compstatin was discovered as a cyclic peptide that inhibits complement activation by binding C3 and interfering with convertase formation and C3 cleavage. As the convergence point of all activation pathways and a molecular hub for crosstalk with multiple pathogenic pathways, C3 represents an attractive target for therapeutic modulation of the complement cascade. A multidisciplinary drug optimization effort encompassing rational wet' and in silico synthetic approaches and an array of biophysical, structural and analytical tools has culminated in an impressive structure-function refinement of compstatin, yielding a series of analogues that show promise for a wide spectrum of clinical applications. These new derivatives have improved inhibitory potency and pharmacokinetic profiles and show efficacy in clinically relevant primate models of disease. This review provides an up-to-date survey of the drug design effort placed on the compstatin family of C3 inhibitors, highlighting the most promising drug candidates. It also discusses translational challenges in complement drug discovery and peptide drug development and reviews concerns related to systemic C3 interception.
  •  
6.
  • Reis, Edimara S., et al. (författare)
  • Safety profile after prolonged C3 inhibition
  • 2018
  • Ingår i: Clinical Immunology. - : Elsevier BV. - 1521-6616 .- 1521-7035. ; 197, s. 96-106
  • Tidskriftsartikel (refereegranskat)abstract
    • The central component of the complement cascade, C3, is involved in various biological functions, including opsonization of foreign bodies, clearance of waste material, activation of immune cells, and triggering of pathways controlling development. Given its broad role in immune responses, particularly in phagocytosis and the clearance of microbes, a deficiency in complement C3 in humans is often associated with multiple bacterial infections. Interestingly, an increased susceptibility to infections appears to occur mainly in the first two years of life and then wanes throughout adulthood. In view of the well-established connection between C3 deficiency and infections, therapeutic inhibition of complement at the level of C3 is often considered with caution or disregarded. We therefore set out to investigate the immune and biochemical profile of non-human primates under prolonged treatment with the C3 inhibitor compstatin (Cp40 analog). Cynomolgus monkeys were dosed subcutaneously with Cp40, resulting in systemic inhibition of C3, for 1 week, 2 weeks, or 3 months. Plasma concentrations of both C3 and Cp40 were measured periodically and complete saturation of plasma C3 was confirmed. No differences in hematological, biochemical, or immunological parameters were identified in the blood or tissues of animals treated with Cp40 when compared to those injected with vehicle alone. Further, skin wounds showed no signs of infection in those treated with Cp40. In fact, Cp40 treatment was associated with a trend toward accelerated wound healing when compared with the control group. In addition, a biodistribution study in a rhesus monkey indicated that the distribution of Cp40 in the body is associated with the presence of C3, concentrating in organs that accumulate blood and produce C3. Overall, our data suggest that systemic C3 inhibition in healthy adult non-human primates is not associated with a weakened immune system or susceptibility to infections.
  •  
7.
  • Skendros, Panagiotis, et al. (författare)
  • Complement C3 inhibition in severe COVID-19 using compstatin AMY-101
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:33
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement C3 activation contributes to COVID-19 pathology, and C3 targeting has emerged as a promising therapeutic strategy. We provide interim data from ITHACA, the first randomized trial evaluating a C3 inhibitor, AMY-101, in severe COVID-19 (PaO2/FiO2 <= 300 mmHg). Patients received AMY-101 (n = 16) or placebo (n = 15) in addition to standard of care. AMY-101 was safe and well tolerated. Compared to placebo (8 of 15, 53.3%), a higher, albeit nonsignificant, proportion of AMY-101-treated patients (13 of 16, 81.3%) were free of supplemental oxygen at day 14. Three nonresponders and two placebo-treated patients succumbed to disease-related complications. AMY-101 significantly reduced CRP and ferritin and restrained thrombin and NET generation. Complete and sustained C3 inhibition was observed in all responders. Residual C3 activity in the three nonresponders suggested the presence of a convertase-independent C3 activation pathway overriding the drug's inhibitory activity. These findings support the design of larger trials exploring the potential of C3-based inhibition in COVID-19 or other complement-mediated diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy