SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(You Lei) srt2:(2020-2024)"

Sökning: WFRF:(You Lei) > (2020-2024)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lane, J. C. E., et al. (författare)
  • Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid arthritis: a multinational, retrospective study
  • 2020
  • Ingår i: Lancet Rheumatology. - : Elsevier BV. - 2665-9913. ; 2:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Hydroxychloroquine, a drug commonly used in the treatment of rheumatoid arthritis, has received much negative publicity for adverse events associated with its authorisation for emergency use to treat patients with COVID-19 pneumonia. We studied the safety of hydroxychloroquine, alone and in combination with azithromycin, to determine the risk associated with its use in routine care in patients with rheumatoid arthritis. Methods In this multinational, retrospective study, new user cohort studies in patients with rheumatoid arthritis aged 18 years or older and initiating hydroxychloroquine were compared with those initiating sulfasalazine and followed up over 30 days, with 16 severe adverse events studied. Self-controlled case series were done to further establish safety in wider populations, and included all users of hydroxychloroquine regardless of rheumatoid arthritis status or indication. Separately, severe adverse events associated with hydroxychloroquine plus azithromycin (compared with hydroxychloroquine plus amoxicillin) were studied. Data comprised 14 sources of claims data or electronic medical records from Germany, Japan, the Netherlands, Spain, the UK, and the USA. Propensity score stratification and calibration using negative control outcomes were used to address confounding. Cox models were fitted to estimate calibrated hazard ratios (HRs) according to drug use. Estimates were pooled where the I-2 value was less than 0.4. Findings The study included 956 374 users of hydroxychloroquine, 310 350 users of sulfasalazine, 323 122 users of hydroxychloroquine plus azithromycin, and 351 956 users of hydroxychloroquine plus amoxicillin. No excess risk of severe adverse events was identified when 30-day hydroxychloroquine and sulfasalazine use were compared. Selfcontrolled case series confirmed these findings. However, long-term use of hydroxychloroquine appeared to be associated with increased cardiovascular mortality (calibrated HR 1.65 [95% CI 1.12-2.44]). Addition of azithromycin appeared to be associated with an increased risk of 30-day cardiovascular mortality (calibrated HR 2.19 [95% CI 1.22-3.95]), chest pain or angina (1.15 [1.05-1.26]), and heart failure (1.22 [1.02-1.45]). Interpretation Hydroxychloroquine treatment appears to have no increased risk in the short term among patients with rheumatoid arthritis, but in the long term it appears to be associated with excess cardiovascular mortality. The addition of azithromycin increases the risk of heart failure and cardiovascular mortality even in the short term. We call for careful consideration of the benefit-risk trade-off when counselling those on hydroxychloroquine treatment. Copyright (c) 2020 The Author(s). Published by Elsevier Ltd.
  •  
2.
  • Li, Han, et al. (författare)
  • A co-doped oxygen reduction catalyst with FeCu promotes the stability of microbial fuel cells
  • 2022
  • Ingår i: Journal of Colloid and Interface Science. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0021-9797 .- 1095-7103. ; 628, s. 652-662
  • Tidskriftsartikel (refereegranskat)abstract
    • Air cathode microbial fuel cell (AC-MFC) cannot be used on a large scale because of its low oxygen reduction reaction (ORR) efficiency. Despite the fact that bimetallic catalysts can greatly enhance the oxygen reduction rate by regulating the electronic structure of the active site, the flaws of insufficient exposure of the active site and easy metal agglomeration limit its catalytic activity. Herein, we report on the preparation of a stable heteroatomic substrate using a copper material organic framework as a precursor, covered by Fe-based active sites. As a result of dipole-dipole interactions, the reduced product Fe2+ forms a weak Fe-O surface that is conducive to the adsorption of active substances. The presence of Fe-0 enhances the electrical conductivity of the catalytic, thus promoting ORR efficiency. Through redox coupling, the D -band center of Fe at FeCu@CN is optimized and brought close to the Fermi level to facilitate electron transfer. Notably, FeCu@CN demonstrates a superior power density of 2796.23 +/- 278.58 mW m(-3), far exceeding that of Pt/C (1363.93 +/- 102.56 mW m(-3)), in the application of microbial fuel cells (MFCs). Meanwhile, the MFC-loaded FeCu@CN maintains excellent stability and outstanding output voltage after 1000 h, which provides feasibility for large-scale application. (C) 2022 Elsevier Inc. All rights reserved.
  •  
3.
  • Li, You, et al. (författare)
  • Cross-Media Communications With Decode-and-Forward Relay and Optimal Power Allocation
  • 2020
  • Ingår i: IEEE Transactions on Vehicular Technology. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0018-9545 .- 1939-9359. ; 69:8, s. 9201-9205
  • Tidskriftsartikel (refereegranskat)abstract
    • With the rapid development of wireless communications, the signals may be transmitted in different media, such as visible light and millimeter-wave along the communication path. In this case, there will be different devices working in different media, which cannot directly communicate to each other. For alleviating this problem, we first conceive a cross-media communication scenario where two devices for different media could communicate with the aid of a relay working in both media. Furthermore, we derive the average outage probability of the uplink and downlink communications. Finally, aiming at minimizing the derived average outage probability, the optimal power allocation (PA) scheme at the relay side is also derived and verified by simulation results.
  •  
4.
  • Li, You, et al. (författare)
  • Preinvasion Assessment of Exotic Bark Beetle-Vectored Fungi to Detect Tree-Killing Pathogens
  • 2022
  • Ingår i: Phytopathology. - 0031-949X. ; 112:2, s. 261-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Exotic diseases and pests of trees have caused continental-scale disturbances in forest ecosystems and industries, and their invasions are considered largely unpredictable. We tested the concept of preinvasion assessment of not yet invasive organisms, which enables empirical risk assessment of potential invasion and impact. Our example assesses fungi associated with Old World bark and ambrosia beetles and their potential to impact North American trees. We selected 55 Asian and European scolytine beetle species using host use, economic, and regulatory criteria. We isolated 111 of their most consistent fungal associates and tested their effect on four important southeastern American pine and oak species. Our test dataset found no highly virulent pathogens that should be classified as an imminent threat. Twenty-two fungal species were minor pathogens, which may require context-dependent response for their vectors at North American borders, while most of the tested fungi displayed no significant impact. Our results are significant in three ways; they ease the concerns over multiple overseas fungus vectors suspected of heightened potential risk, they provide a basis for the focus on the prevention of introduction and establishment of species that may be of consequence, and they demonstrate that preinvasion assessment, if scaled up, can support practical risk assessment of exotic pathogens.
  •  
5.
  • Ma, Su-Min, et al. (författare)
  • The coarse-grained models of poly(ethylene oxide) and poly(propylene oxide) homopolymers and poloxamers in big multipole water (BMW) and MARTINI frameworks
  • 2020
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 22:28, s. 15976-15985
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyethylene oxide (PEO) and poly(propylene oxide) (PPO), especially their tri-block copolymers PEO-PPO-PEO (poloxamers), have a broad range of applications in biotechnology and medical science. Understanding their specific interactions with biomembranes is the key to unveil the unique features of poloxamers either as membrane-healing or membrane pore-forming agents. Based on the coarse-graining convention of the MARTINI force field and the big multipole water (BMW) model, which has a three charged site topology and can reproduce the correct dipole moment of four-water clusters, we generated coarse-grained (CG) models with analytical and numerical potentials for PEO and PPO homopolymers and poloxamers in dilute solution. The effective bonded interaction potentials between CG beads were determined from the probability distributions of bond lengths, angles and dihedrals that are determined from atomistic simulations. The nonbonded interaction parameters were fine-tuned to reproduce the conformational properties of atomistic PEO and PPO homopolymers and poloxamersviaextensive CG simulations of PEO and PPO homopolymers and poloxamers in a BMW water environment. The reported CG models provide a promising framework for a comprehensive understanding of the microstructural, conformational, and dynamic properties of poloxamers and their delicate interactions with other species in an explicit water environment.
  •  
6.
  • Wang, Hongyu, et al. (författare)
  • Co/Fe co-doped ZIF-8 derived hierarchically porous composites as high-performance electrode materials for Cu2+ions capacitive deionization
  • 2023
  • Ingår i: Chemical Engineering Journal. - : ELSEVIER SCIENCE SA. - 1385-8947 .- 1873-3212. ; 460
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to a threat to human life from heavy metal ions pollution, unprecedented interest has been gained in the development of water purification technologies. Here, we explore another new approach to exploit a prospective carbon material for removing copper ions from aqueous solution based on rapid and easy capacitive deionization (CDI). Reasonable carbon materials modification with ideal composition and improved morphological structure is essential to additionally optimize the capabilities of CDI. We prepared a nitrogen-rich hierarchically porous carbon composites (CoFe-NC) with uniform cobalt (Co) and iron (Fe) doped metal in carbon skeleton by a simple impregnation and pyrolysis method, derived from zeolitic imidazolate framework-8, to use as highly effective CDI electrode for copper ions removal. The addition of Fe can facilitate the uniform dispersion of metals, and enable the formation of a stable carbon cage after pyrolysis. It can sufficiently expose active sites of the electrode materials and promote interfacial charge transfer, thus improving CDI electrosorption efficiency. CoFe-NC composites electrode can achieve outstanding deionization capacity (91.31 mg g-1) in 25 mg L-1 CuSO4 solu-tion. The carbon cage structure of CoFe-NC not only prevents aggregation of metals and avoids destruction of rich multistage pore system by pyrolysis, but also induces a faster ions transport rate. In addition, density functional theory calculations demonstrated that the co-doping of Co and Fe can remarkably increase the adsorption en-ergies of Cu2+ ions, leading to excellent selectivity, which indicates that CoFe-NC composites can be a desired CDI electrode material.
  •  
7.
  • Wang, Hongyu, et al. (författare)
  • Exploration of selective copper ion separation from wastewater via capacitive deionization with highly effective 3D carbon framework-anchored Co(PO3)2 electrode
  • 2024
  • Ingår i: Separation and Purification Technology. - : ELSEVIER. - 1383-5866 .- 1873-3794. ; 336
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing amount of heavy metal copper ions (Cu2+) in industrial emissions, poses a serious threat to human health, biological environment, and resource scarcity. Capacitive deionization (CDI) is considered as a green and efficient method for desalination. It is crucial to develop high-performance electrodes for efficient operation of CDI that go beyond conventional carbon and yield considerable environmental benefits. Here, metal organic frameworks (MOFs) derived carbon-loaded cobalt metaphosphate (NC-Co(PO3)2) was prepared by lowtemperature gas-solid phosphating for Cu2+ removal as CDI electrode for the first time. NC-Co(PO3)2 demonstrated superior electrode structure and function due to the synergistic effects of electric double layer coupling PO bonds, the binding tendency of metaphosphate groups with Cu2+, and interfacial redox reactions induced by the labile valence state of cobalt. The optimal electrosorption capacity of NC-Co(PO3)2 was 95.41 mg g-1 at 1 V in 50 mL Cu2+ solution with splendid cyclic regeneration capability. Moreover, NC-Co(PO3)2 exhibited excellent selectivity and outstanding electrosorption performance in the presence of multiple coexisting ions and this CDI system realized the purification of actual copper-containing wastewater. A series of characterizations further revealed the specific mechanism of Cu2+ in adsorption-desorption process. Our finding strongly supported NCCo(PO3)2 electrode can extend the CDI platform's capability for effectively removing and retrieving Cu2+ from wastewater.
  •  
8.
  • Wang, Yu-Cheng, et al. (författare)
  • Porous Carbon Membrane-Supported Atomically Dispersed Pyrrole-Type Fe-N-4 as Active Sites for Electrochemical Hydrazine Oxidation Reaction
  • 2020
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 16:31
  • Tidskriftsartikel (refereegranskat)abstract
    • The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe-N-x sites supported by hierarchically porous carbon membranes are designed to electrocatalyze the hydrazine oxidation reaction (HzOR), one of the key techniques in electrochemical nitrogen transformation. The high intrinsic catalytic activity of the Fe-N-x single-atom catalyst together with the uniquely mixed micro-/macroporous membrane support positions such an electrode among the best-known heteroatom-based carbon anodes for hydrazine fuel cells. Combined with advanced characterization techniques, electrochemical probe experiments, and density functional theory calculation, the pyrrole-type Fe-N-4 structure is identified as the real catalytic site in HzOR.
  •  
9.
  • Xu, Weicheng, et al. (författare)
  • Nitrogen doping to accelerate the phase transition to ordered intermetallic Pt3Co catalyst for the oxygen reduction reaction in fuel cells
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:8, s. 4078-4087
  • Tidskriftsartikel (refereegranskat)abstract
    • Ordered intermetallic Pt–M alloys are foreseen to be promising as next-generation low-Pt catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) due to their high catalytic activity and stability. Nevertheless, the disorder-to-order intermetallic phase transition often needs to proceed at elevated annealing temperature for a long time, which leads to severe particle agglomeration. Herein, an efficient nitrogen (N)-doping strategy is developed to speed up such phase transition in an intermetallic Pt3Co alloy catalyst, which shortens the annealing duration by 3–5 fold at a temperature of 600–800 °C. Such a strategy can not only minimize the particle agglomeration but also effectively optimize the electronic structure of surface Pt atoms with the incorporated N. The prepared N-doped ordered intermetallic Pt3Co catalyst exhibits high ORR activity among the best of the state-of-the-art, with mass activities of 1.21 and 1.20 A mgPt−1 at 0.90 V in rotating disk electrode (RDE) and proton exchange membrane fuel cell (PEMFC) tests, respectively. Moreover, with the total Pt loading of 0.15 mgPt cm−2, the H2–air PEMFC delivers a power density of 1.27 W cm−2 at 150 kPaabs and 0.6 V, corresponding to a high Pt utilization of 0.118 gPt kW−1 that has surpassed the DOE 2025 target (0.125 gPt kW−1). This study paves a new way to develop high-performance low-Pt ORR catalysts for PEMFCs.
  •  
10.
  • Yao, Zehan, et al. (författare)
  • Magnetization-induced optical rectification and inverse spin Hall effect for interfacial terahertz generation in metallic heterostructures
  • 2021
  • Ingår i: Physical Review B. - 2469-9950. ; 103:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Metallic heterostructure as promising terahertz (THz) spintronic emitters has promoted the development of both spintronics and THz science. However, the underlying physics at the metallic interface, such as the nonlinear optical effect, remains unclear. Herein, we present interface magnetization induced THz generation from metallic heterostructure consisting of Heusler alloy CoFeMnSi (CFMS) and Pd thin films. THz generation is ascribed to 35% contribution from the magnetization-induced optical rectification (MOR) and 65% contribution from inverse spin Hall effect (ISHE) based on the pump polarization and sample azimuthal angle dependent measurement. Furthermore, the contribution ratio of the MOR decreases to 12% via lowering the CFMS grown temperature, which is due to the reduced crystalline quality and possible metal to semiconductor transformation in CFMS. Our results not only clarify MOR and ISHE in metallic heterostructure for the scientific field, but they also benefit THz source optimization for the technology field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy