SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zeiler FA) srt2:(2022)"

Sökning: WFRF:(Zeiler FA) > (2022)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Froese, L, et al. (författare)
  • Dynamic Temporal Relationship Between Autonomic Function and Cerebrovascular Reactivity in Moderate/Severe Traumatic Brain Injury
  • 2022
  • Ingår i: Frontiers in network physiology. - : Frontiers Media SA. - 2674-0109. ; 2, s. 837860-
  • Tidskriftsartikel (refereegranskat)abstract
    • There has been little change in morbidity and mortality in traumatic brain injury (TBI) in the last 25 years. However, literature has emerged linking impaired cerebrovascular reactivity (a surrogate of cerebral autoregulation) with poor outcomes post-injury. Thus, cerebrovascular reactivity (derived through the pressure reactivity index; PRx) is emerging as an important continuous measure. Furthermore, recent literature indicates that autonomic dysfunction may drive impaired cerebrovascular reactivity in moderate/severe TBI. Thus, to improve our understanding of this association, we assessed the physiological relationship between PRx and the autonomic variables of heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS) using time-series statistical methodologies. These methodologies include vector autoregressive integrative moving average (VARIMA) impulse response function analysis, Granger causality, and hierarchical clustering. Granger causality testing displayed inconclusive results, where PRx and the autonomic variables had varying bidirectional relationships. Evaluating the temporal profile of the impulse response function plots demonstrated that the autonomic variables of BRS, ratio of low/high frequency of HRV and very low frequency HRV all had a strong relation to PRx, indicating that the sympathetic autonomic response may be more closely linked to cerebrovascular reactivity, then other variables. Finally, BRS was consistently associated with PRx, possibly demonstrating a deeper relationship to PRx than other autonomic measures. Taken together, cerebrovascular reactivity and autonomic response are interlinked, with a bidirectional impact between cerebrovascular reactivity and circulatory autonomics. However, this work is exploratory and preliminary, with further study required to extract and confirm any underlying relationships.
  •  
7.
  • Froese, L, et al. (författare)
  • Practical Considerations for Continuous Time-Domain Cerebrovascular Reactivity Indices in Traumatic Brain Injury: Do Scaling Errors in Parent Signals Matter?
  • 2022
  • Ingår i: Frontiers in neurology. - : Frontiers Media SA. - 1664-2295. ; 13, s. 857617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Literature pertaining to traumatic brain injury care involves the mediation and control of secondary brain injury mechanisms, chief among these is cerebral autoregulation. Cerebral autoregulation is frequently assessed through surrogate measures of cerebrovascular reactivity. An important aspect to acknowledge when calculating cerebrovascular reactivity indices is the linearity within two-parent bio-signals or variables. We highlighted the concept of linearity in raw parent bio-signals used for the calculation of the cerebrovascular reactivity index and what potential implications linearity carries for index derivation. Key of which is that the initial differencing or location of the pressure probes does not influence linear methods of cerebral reactivity calculations so long as the slow-wave vasogenic changes are being recorded.
  •  
8.
  • Johnson, GGRJ, et al. (författare)
  • Accuracy of Optic Nerve Sheath Diameter Measurements in Pocket-Sized Ultrasound Devices in a Simulation Model
  • 2022
  • Ingår i: Frontiers in medicine. - : Frontiers Media SA. - 2296-858X. ; 9, s. 831778-
  • Tidskriftsartikel (refereegranskat)abstract
    • Transorbital sonographic measurement of optic nerve sheath diameter (ONSD) is an emerging non-invasive technique for the identification and monitoring of intracranial hypertension. In recent years, new pocket ultrasound devices have become available, and it is uncertain if they have the resolution to measure such small structures appropriately as compared to their predecessors. In this study, we measure the performance of three ultrasound units on a simulation model to establish their precision and accuracy.MethodsONSD was measured by three expert point-of-care sonographers using ultrasound machines three times on each of seven discrete ONS model sizes ranging from 3.5 to 7.9 mm. Two pocket ultrasounds (IVIZ, Sonosite, and Lumify, Philips) and one standard-sized portable ultrasound (M-Turbo, Sonosite) were used. Measurements were analyzed for mean error and variance and tested for significance using blocked covariance matrix regression analyses.ResultsThe devices differed in their variances (Lumify: 0.19 mm2, M-Turbo: 0.26 mm2, IVIZ: 0.34 mm2) and their mean error (Lumify: −0.05 mm, M-Turbo: 0.10 mm, IVIZ: −0.10 mm). The difference in mean error between users is not significant (p = 0.45), but there is a significant difference in mean error between devices (p = 0.02).ConclusionsAccurate ONSD measurement is possible utilizing pocket-sized ultrasound, and in some cases, may be more accurate than larger portable ultrasound units. While the differences in these devices were statistically significant, all three were highly accurate, with one pocket device (Lumify) outperforming the rest. Further study in human subjects should be conducted prior to using pocket ultrasound devices for in vivo diagnosis of intracranial hypertension.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy