SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zelezniak Aleksej 1984) srt2:(2021)"

Sökning: WFRF:(Zelezniak Aleksej 1984) > (2021)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Demichev, Vadim, et al. (författare)
  • A time-resolved proteomic and prognostic map of COVID-19
  • 2021
  • Ingår i: Cell Systems. - : Elsevier BV. - 2405-4712 .- 2405-4720. ; 12:8, s. 780-794.e7
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease.
  •  
2.
  •  
3.
  • Håkansson, Samuel, 1996, et al. (författare)
  • Potential for improved retention rate by personalized antiseizure medication selection: A register-based analysis
  • 2021
  • Ingår i: Epilepsia. - : Wiley. - 0013-9580 .- 1528-1167. ; 62:9, s. 2123-2132
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective The first antiseizure medication (ASM) is ineffective or intolerable in 50% of epilepsy cases. Selection between more than 25 available ASMs is guided by epilepsy factors, but also age and comorbidities. Randomized evidence for particular patient subgroups is seldom available. We asked whether register data could be used for retention rate calculations based on demographics, comorbidities, and ASM history, and quantified the potential improvement in retention rates of the first ASM in several large epilepsy cohorts. We also describe retention rates in patients with epilepsy after traumatic brain injury and dementia, patient groups with little available evidence. Methods We used medical, demographic, and drug prescription data from epilepsy cohorts from comprehensive Swedish registers, containing 6380 observations. By analyzing 381 840 prescriptions, we studied retention rates of first- and second-line ASMs for patients with epilepsy in multiple sclerosis (MS), brain infection, dementia, traumatic brain injury, or stroke. The rank of retention rates of ASMs was validated by comparison to published randomized control trials. We identified the optimal stratification for each brain disease, and quantified the potential improvement if all patients had received the optimal ASM. Results Using optimal stratification for each brain disease, the potential improvement in retention rate (percentage points) was MS, 20%; brain infection, 21%; dementia, 14%; trauma, 21%; and stroke, 14%. In epilepsy after trauma, levetiracetam had the highest retention rate at 80% (95% confidence interval [CI] = 65-89), exceeding that of the most commonly prescribed ASM, carbamazepine (p = .04). In epilepsy after dementia, lamotrigine (77%, 95% CI = 68-84) and levetiracetam (74%, 95% CI = 68-79) had higher retention rates than carbamazepine (p = .006 and p = .01, respectively). Significance We conclude that personalized ASM selection could improve retention rates and that national registers have potential as big data sources for personalized medicine in epilepsy.
  •  
4.
  • Li, Gang, 1991, et al. (författare)
  • Bayesian genome scale modelling identifies thermal determinants of yeast metabolism
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular basis of how temperature affects cell metabolism has been a long-standing question in biology, where the main obstacles are the lack of high-quality data and methods to associate temperature effects on the function of individual proteins as well as to combine them at a systems level. Here we develop and apply a Bayesian modeling approach to resolve the temperature effects in genome scale metabolic models (GEM). The approach minimizes uncertainties in enzymatic thermal parameters and greatly improves the predictive strength of the GEMs. The resulting temperature constrained yeast GEM uncovers enzymes that limit growth at superoptimal temperatures, and squalene epoxidase (ERG1) is predicted to be the most rate limiting. By replacing this single key enzyme with an ortholog from a thermotolerant yeast strain, we obtain a thermotolerant strain that outgrows the wild type, demonstrating the critical role of sterol metabolism in yeast thermosensitivity. Therefore, apart from identifying thermal determinants of cell metabolism and enabling the design of thermotolerant strains, our Bayesian GEM approach facilitates modelling of complex biological systems in the absence of high-quality data and therefore shows promise for becoming a standard tool for genome scale modeling.
  •  
5.
  • Li, Gang, 1991, et al. (författare)
  • Performance of Regression Models as a Function of Experiment Noise
  • 2021
  • Ingår i: Bioinformatics and Biology Insights. - : SAGE Publications. - 1177-9322. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A challenge in developing machine learning regression models is that it is difficult to know whether maximal performance has been reached on the test dataset, or whether further model improvement is possible. In biology, this problem is particularly pronounced as sample labels (response variables) are typically obtained through experiments and therefore have experiment noise associated with them. Such label noise puts a fundamental limit to the metrics of performance attainable by regression models on the test dataset. Results: We address this challenge by deriving an expected upper bound for the coefficient of determination (R2) for regression models when tested on the holdout dataset. This upper bound depends only on the noise associated with the response variable in a dataset as well as its variance. The upper bound estimate was validated via Monte Carlo simulations and then used as a tool to bootstrap performance of regression models trained on biological datasets, including protein sequence data, transcriptomic data, and genomic data. Conclusions: The new method for estimating upper bounds for model performance on test data should aid researchers in developing ML regression models that reach their maximum potential. Although we study biological datasets in this work, the new upper bound estimates will hold true for regression models from any research field or application area where response variables have associated noise.
  •  
6.
  • Messner, Christoph B., et al. (författare)
  • Ultra-fast proteomics with Scanning SWATH
  • 2021
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 39:7, s. 846-854
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate quantification of the proteome remains challenging for large sample series and longitudinal experiments. We report a data-independent acquisition method, Scanning SWATH, that accelerates mass spectrometric (MS) duty cycles, yielding quantitative proteomes in combination with short gradients and high-flow (800 µl min ) chromatography. Exploiting a continuous movement of the precursor isolation window to assign precursor masses to tandem mass spectrometry (MS/MS) fragment traces, Scanning SWATH increases precursor identifications by ~70% compared to conventional data-independent acquisition (DIA) methods on 0.5–5-min chromatographic gradients. We demonstrate the application of ultra-fast proteomics in drug mode-of-action screening and plasma proteomics. Scanning SWATH proteomes capture the mode of action of fungistatic azoles and statins. Moreover, we confirm 43 and identify 11 new plasma proteome biomarkers of COVID-19 severity, advancing patient classification and biomarker discovery. Thus, our results demonstrate a substantial acceleration and increased depth in fast proteomic experiments that facilitate proteomic drug screens and clinical studies. –1
  •  
7.
  • Repecka, Donatas, et al. (författare)
  • Expanding functional protein sequence spaces using generative adversarial networks
  • 2021
  • Ingår i: Nature Machine Intelligence. - : Springer Science and Business Media LLC. - 2522-5839. ; 3:4, s. 324-333
  • Tidskriftsartikel (refereegranskat)abstract
    • De novo protein design for catalysis of any desired chemical reaction is a long-standing goal in protein engineering because of the broad spectrum of technological, scientific and medical applications. However, mapping protein sequence to protein function is currently neither computationally nor experimentally tangible. Here, we develop ProteinGAN, a self-attention-based variant of the generative adversarial network that is able to ‘learn’ natural protein sequence diversity and enables the generation of functional protein sequences. ProteinGAN learns the evolutionary relationships of protein sequences directly from the complex multidimensional amino-acid sequence space and creates new, highly diverse sequence variants with natural-like physical properties. Using malate dehydrogenase (MDH) as a template enzyme, we show that 24% (13 out of 55 tested) of the ProteinGAN-generated and experimentally tested sequences are soluble and display MDH catalytic activity in the tested conditions in vitro, including a highly mutated variant of 106 amino-acid substitutions. ProteinGAN therefore demonstrates the potential of artificial intelligence to rapidly generate highly diverse functional proteins within the allowed biological constraints of the sequence space.
  •  
8.
  • Sánchez, Benjamín José, 1988, et al. (författare)
  • Benchmarking accuracy and precision of intensity-based absolute quantification of protein abundances in Saccharomyces cerevisiae
  • 2021
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 21:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein quantification via label-free mass spectrometry (MS) has become an increasingly popular method for predicting genome-wide absolute protein abundances. A known caveat of this approach, however, is the poor technical reproducibility, that is, how consistent predictions are when the same sample is measured repeatedly. Here, we measured proteomics data for Saccharomyces cerevisiae with both biological and inter-batch technical triplicates, to analyze both accuracy and precision of protein quantification via MS. Moreover, we analyzed how these metrics vary when applying different methods for converting MS intensities to absolute protein abundances. We demonstrate that our simple normalization and rescaling approach can perform as accurately, yet more precisely, than methods which rely on external standards. Additionally, we show that inter-batch reproducibility is worse than biological reproducibility for all evaluated methods. These results offer a new benchmark for assessing MS data quality for protein quantification, while also underscoring current limitations in this approach.
  •  
9.
  • Zorrilla, Francisco, 1994, et al. (författare)
  • metaGEM: reconstruction of genome scale metabolic models directly from metagenomes
  • 2021
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 49:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Metagenomic analyses of microbial communities have revealed a large degree of interspecies and intraspecies genetic diversity through the reconstruction of metagenome assembled genomes (MAGs). Yet, metabolic modeling efforts mainly rely on reference genomes as the starting point for reconstruction and simulation of genome scale metabolic models (GEMs), neglecting the immense intra- and inter-species diversity present in microbial communities. Here, we present metaGEM (https://github.com/franciscozo rrilla/metaGEM), an end-to-end pipeline enabling metabolic modeling of multi-species communities directly from metagenomes. The pipeline automates all steps from the extraction of context-specific prokaryotic GEMs from MAGs to community level flux balance analysis (FBA) simulations. To demonstrate the capabilities of metaGEM, we analyzed 483 samples spanning lab culture, human gut, plant-associated, soil, and ocean metagenomes, reconstructing over 14,000 GEMs. We show that GEMs reconstructed from metagenomes have fully represented metabolism comparable to isolated genomes. We demonstrate that metagenomic GEMs capture intraspecies metabolic diversity and identify potential differences in the progression of type 2 diabetes at the level of gut bacterial metabolic exchanges. Overall, metaGEM enables FBA-ready metabolic model reconstruction directly from metagenomes, provides a resource of metabolic models, and showcases community-level modeling of microbiomes associated with disease conditions allowing generation of mechanistic hypotheses.
  •  
10.
  • Zrimec, Jan, 1981, et al. (författare)
  • Learning the Regulatory Code of Gene Expression
  • 2021
  • Ingår i: Frontiers in Molecular Biosciences. - : Frontiers Media SA. - 2296-889X. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence representations and interpreting them enables us to improve our understanding of the regulatory code governing gene expression. Here, we review the latest developments that apply shallow or deep learning to quantify molecular phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic sequencing data. Our approach is to build from the ground up, first focusing on the initiating protein-DNA interactions, then specific coding and non-coding regions, and finally on advances that combine multiple parts of the gene and mRNA regulatory structures, achieving unprecedented performance. We thus provide a quantitative view of gene expression regulation from nucleotide sequence, concluding with an information-centric overview of the central dogma of molecular biology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (9)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Zelezniak, Aleksej, ... (11)
Zrimec, Jan, 1981 (5)
Nielsen, Jens B, 196 ... (3)
Ji, Boyang, 1983 (2)
Ralser, M. (2)
Zorrilla, Francisco, ... (2)
visa fler...
Buric, Filip, 1988 (2)
Engqvist, Martin, 19 ... (2)
Li, Gang, 1991 (2)
Messner, Christoph B ... (2)
Freiwald, Anja (2)
Demichev, Vadim (2)
Mülleder, Michael (2)
Kurth, Florian (2)
Ramharter, Michael (1)
Garcia-Ptacek, Sara (1)
Hummel, Michael (1)
Savolainen, Otto, 19 ... (1)
Drosten, C (1)
Garcia, Victor (1)
Zelano, Johan, 1981 (1)
Keller, M. A. (1)
Larsson, David, 1986 (1)
Joannidis, Michael (1)
Larsbrink, Johan, 19 ... (1)
Porteous, David J (1)
Hayward, Caroline (1)
Patil, K. R. (1)
Campbell, Archie (1)
Grund, Daniel (1)
Lahtvee, Petri-Jaan, ... (1)
Håkansson, Samuel, 1 ... (1)
Larsson, David (1)
Karpus, Laurynas (1)
Rokaitis, Irmantas (1)
Zelano, Johan (1)
Garcia-Ptacek, S (1)
Campbell, Kate, 1987 (1)
Kasvandik, S (1)
Lemke, Oliver (1)
Correia-Melo, Clara (1)
Meskys, Rolandas (1)
Domenzain Del Castil ... (1)
Zoller, Thomas (1)
Szyrwiel, Lukasz (1)
Yu, Jason S.L. (1)
von Kalle, Christof (1)
Laurynenas, Audrius (1)
Marioni, Riccardo E. (1)
Tober-Lau, Pinkus (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (11)
Göteborgs universitet (2)
Karolinska Institutet (2)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Medicin och hälsovetenskap (5)
Teknik (3)
Lantbruksvetenskap (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy