SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhan X) srt2:(2020-2024)"

Search: WFRF:(Zhan X) > (2020-2024)

  • Result 1-10 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Abbasi, R., et al. (author)
  • IceCat-1: The IceCube Event Catalog of Alert Tracks
  • 2023
  • In: Astrophysical Journal, Supplement Series. - : IOP Publishing Ltd. - 1538-4365 .- 0067-0049. ; 269:1
  • Journal article (peer-reviewed)abstract
    • We present a catalog of likely astrophysical neutrino track-like events from the IceCube Neutrino Observatory. IceCube began reporting likely astrophysical neutrinos in 2016, and this system was updated in 2019. The catalog presented here includes events that were reported in real time since 2019, as well as events identified in archival data samples starting from 2011. We report 275 neutrino events from two selection channels as the first entries in the catalog, the IceCube Event Catalog of Alert Tracks, which will see ongoing extensions with additional alerts. The Gold and Bronze alert channels respectively provide neutrino candidates with a 50% and 30% probability of being astrophysical, on average assuming an astrophysical neutrino power-law energy spectral index of 2.19. For each neutrino alert, we provide the reconstructed energy, direction, false-alarm rate, probability of being astrophysical in origin, and likelihood contours describing the spatial uncertainty in the alert's reconstructed location. We also investigate a directional correlation of these neutrino events with gamma-ray and X-ray catalogs, including 4FGL, 3HWC, TeVCat, and Swift-BAT.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Zheng, C. W., et al. (author)
  • Global trends in oceanic wind speed, wind-sea, swell, and mixed wave heights
  • 2022
  • In: Applied Energy. - : Elsevier BV. - 0306-2619. ; 321
  • Journal article (peer-reviewed)abstract
    • The climatic trends of Wind Speed (WS) and wave height play a key role in wind and wave energy assessments, climate change analyses, and air-sea interactions, among many others. Using ERA5 reanalysis, this study reveals the climatic trends of global oceanic WS and wave height for 1979-2018, including the overall trends, regional and seasonal differences of the trends, with a special focus on the differences and similarities between the trends in wind-sea wave height (Hwind) and swell wave height (Hswell), as well as the contributions of climate indices to WS, Hwind, Hswell and Significant Wave Height (Hs) respectively, by employing linear regression and correlation analysis. The results show an overall global oceanic increase for 1979-2018 in WS (+0.47 cm/s/yr), with increases of +0.13, +0.28 and +0.32 cm/yr in Hwind, Hswell and Hs respectively, and a stronger increasing trend in the Southern Hemisphere than in the Northern Hemisphere. There is good agreement between the spatial distribution of annual and seasonal trends in WS and those of Hwind, as well as between Hswell and Hs. Areas with strong increasing trends of WS and Hwind are mainly located in the tropical South Indian Ocean and tropical Pacific Ocean. Hswell and Hs exhibit significant increases in most global oceans. The months with the broadest and strongest increase in Hswell and Hs are June-July-August (JJA). There is a close relationship among the WS, wave height climatology and the modes of climate variability. The wind has the strongest response to climate indices, followed by the wind-sea, with swell having a minimal response.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view