SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhan Y) srt2:(2005-2009)"

Sökning: WFRF:(Zhan Y) > (2005-2009)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Zhang, Fengling, et al. (författare)
  • Ordered mesoporous Ag-TiO2-KIT-6 heterostructure: synthesis, characterization and photocatalysis
  • 2009
  • Ingår i: Journal of Materials Chemistry. - : Royal Society of Chemistry (RSC). - 1364-5501 .- 0959-9428. ; 19:18, s. 2771-2777
  • Tidskriftsartikel (refereegranskat)abstract
    • Ordered mesoporous Ag-TiO2-KIT-6 heterostructured nanocrystals were successfully synthesized by a template-based method, where a layer of TiO2 and Ag2O nanoparticles were deposited on cubic (Ia3d) silica (KIT-6) in an orderly manner; at the same time, the formed Ag2O nanoparticles were photolyzed to metallic Ag nanoparticles. Our results show that Ag-TiO2-KIT-6 is an ordered mesoporous composite material, which is composed of Ag-TiO2 heterostructures and the amorphous KIT-6 template. In addition, Ag-TiO2-KIT-6 possesses the highest photocatalytic activity among the as-synthesized photocatalysts, which can be attributed to the Ag-TiO2 heterojunctions and the excellent texture: (1) Ag-TiO2 heterojunctions improve the separation of photogenerated electron-hole pairs due to the potential energy differences between Ag and TiO2 nanocrystals, thus enhancing the photocatalytic activity; (2) the Ag-TiO2-KIT-6 sample possesses a high BET surface area and a large number of ordered pore channels, which facilitate adsorption and transportation of dye molecules, also leading to higher photocatalytic activity. It was also found that the Ag-TiO2 heterostructure plays a more important role in enhancing the photocatalytic activity than high BET surface area.
  •  
3.
  • Zheng, L. R., et al. (författare)
  • Network Structured SnO2/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity
  • 2009
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 48:5, s. 1819-1825
  • Tidskriftsartikel (refereegranskat)abstract
    • A network-structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity was successfully synthesized through a simple two-step solvothermal method. The as-synthesized samples are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, N-2 physical adsorption, and UV-vis spectroscopy. The results show that the SnO2/ZnO sample with a molar ratio of Sn/Zn = 1 is a mesoporous composite material composed of SnO2 and ZnO. The photocatalytic activity of SnO2/ZnO heterojunction nanocatalysts for the degradation of methyl orange is much higher than those of solvothermally synthesized SnO2 and ZnO samples, which can be attributed to the SnO2-ZnO heterojunction, the pore structure, and higher Brunauer-Emmeff-Teller (BET) surface area of the sample: (1) The SnO2-ZnO heterojunction improves the separation of photogenerated electron-hole pairs due to the potential energy differences between SnO2 and ZnO, thus enhancing the photocatalytic activity. (2) The SnO2/ZnO sample might possess more surface reaction sites and adsorb and transport more dye molecules due to the higher BET surface area and many pore channels, also leading to higher photocatalytic activity.
  •  
4.
  • Zheng, Y. H., et al. (författare)
  • Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property
  • 2008
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 112:29, s. 10773-10777
  • Tidskriftsartikel (refereegranskat)abstract
    • Ag/ZnO heterostructure nanocatalysts with Ag content of 1 wt % are successfully prepared through three different simple methods, where chemical reduction and photolysis reaction are adopted to fabricate the heterostructure. The dispersity of Ag clusters and/or nanoparticles in Ag/ZnO nanocatalyst is investigated by EDX mapping and XPS techniques. The experimental results show that deposition-precipitation is an efficient method to synthesize Ag/ZnO nanocatalyst with highly dispersed Ag clusters and/or nanoparticles; the photocatalytic activity of Ag/ZnO photocatalysts mainly depends on the dispersity of metallic Ag in Ag/ZnO nanocatalyst; the higher the dispersity of metallic Ag in Ag/ZnO nanocatalyst is, the higher the photocatalytic activity of Ag/ZnO photocatalyst should be. In addition, it is also found that the dispersity of Ag/ZnO photocatalyst in the dye solution is another key factor for liquid-phase photocatalysis due to the UV-light utilizing efficiency. The higher the UV-light utilizing efficiency is, the higher the photocatalytic activity of Ag/ZnO heterostructure photocatalyst should be.
  •  
5.
  • Ding, B.F., et al. (författare)
  • Electroluminescence and magnetoresistance of the organic light-emitting diode with a La0.7 Sr0.3 Mn O3 anode
  • 2008
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 93:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Electroluminescence (EL) with brightness up to 300 cd m2 is observed from organic light-emitting diodes fabricated on oxygen-treated La0.7 Sr0.3 Mn O 3 anodes. An external magnetic field of 150 mT applied parallel to the device surface can enhance the EL intensity by 10%, accompanied by a raised current efficiency. In-plane magnetization of the ferromagnetic anode is found to be the main origin of increase in the current contributable to EL, though magnetoresistance of the organic functional materials also plays a role in the EL enhancement observed in the magnetic field. © 2008 American Institute of Physics.
  •  
6.
  •  
7.
  •  
8.
  • Yu, G., et al. (författare)
  • Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles
  • 2005
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 127:17, s. 6335-6346
  • Forskningsöversikt (refereegranskat)abstract
    • The excellent electroluminescent (EL) properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles, 1-methyl-1,2,3,4,5-pentaphenylsilole (MPPS), and 1,1,2,3,4,5-hexaphenylsilole (HPS) have been found. Despite some studies devoted to these materials, very little is known about the real origin of their unique EL properties. Therefore, we investigated the structures, photoluminescence (PL), and charge carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles as well as the effect of substituents on these characteristics. The single crystals of the three siloles involving 1,1-dimethyl-2,3,4,5-tetraphenylsilole (DMTPS), MPPS, and HIPS were grown and their crystal structures were determined by X-ray diffraction. Three siloles have nonplanar molecular structures. The substituents at 1,1-positions enhance the steric hindrance and have predominant influence on the twisted degree of phenyl groups at ring carbons. This nonplanar structure reduces the intermolecular interaction and the likelihood of excimer formation, and increases PL efficiency in the solid state. The silole films show high fluorescence quantum yields (75-85%), whereas their dilute solutions exhibit a faint emission. The electronic structures of the three siloles were investigated using quantum chemical calculations. The highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) are mainly localized on the silole ring and two phenyl groups at 2,5-positions in all cases, while the LUMOs have a significant orbital density at two exocyclic Si-C bonds. The extremely theoretical studies of luminescent properties were carried out. We calculated the nonradiative decay rate of the first excited state as well as the radiative one. It is found that the faint emission of DMTPS in solutions mainly results from the huge nonradiative decay rate. In solid states, molecular packing can remarkably restrict the intramolecular rotation of the peripheral side phenyl ring, which has a large contribution to the nonradiative transition process. This explains why the 1,1-disubstituted 2,3,4,5-tetraphenylsiloles in the thin films exhibit high fluorescence quantum yields. The charge carrier mobilities of the MPPS and HPS films were measured using a transient EL technique. We obtained a mobility of 2.1 x 10(-6) cm(2)/V(.)s in the MPPS film at an electric field of 1.2 x 10(6) V/cm. This mobility is comparable to that of Alq(3), which is one of the most extensively used electron transport materials in organic light-emitting diodes (LEDs), at the same electric field. The electron mobility of the HPS film is about similar to 1.5 times higher than that of the MPPS film. To the best of our knowledge, this kind of material is one of the most excellent emissive materials that possess both high charge carrier mobility and high PL efficiency in the solid states simultaneously. The excellent EL performances of MPPS and HPS are presumably ascribed to these characteristics.
  •  
9.
  • Zhan, Y.Q., et al. (författare)
  • Alignment of energy levels at the Al q3/La0.7 Sr0.3 Mn O3 interface for organic spintronic devices
  • 2007
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 76:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structure of the interface between tris(8-hydroxyquinolino)- aluminum (Al q3) and La0.7 Sr0.3 Mn O3 (LSMO) manganite was investigated by means of photoelectron spectroscopy. As demonstrated recently, this interface is characterized by efficient spin injection in organic spintronic devices. We detected a strong interface dipole of about 0.9 eV that shifts down the whole energy diagram of the Al q3 with respect to the vacuum level. This modifies the height of the barrier for the injection into highest occupied molecular orbital level to 1.7 eV, indicating more difficult hole injection at this interface than expected for the undistorted energy level diagram. We believe that the interface dipole is due to the intrinsic dipole moment of the Al q3 layer. The presented data lead to significant progress in understanding the electronic structure of LSMO/Al q3 interface and represent a step toward the description of spin transport in organic spin valves. © 2007 The American Physical Society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy