SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang CY) srt2:(2020-2024)"

Sökning: WFRF:(Zhang CY) > (2020-2024)

  • Resultat 1-10 av 67
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Bastard, P, et al. (författare)
  • Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs
  • 2022
  • Ingår i: Science immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 78:7490, s. eabp8966-
  • Tidskriftsartikel (refereegranskat)abstract
    • Life-threatening ‘breakthrough’ cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population.
  •  
5.
  •  
6.
  • Callaway, EM, et al. (författare)
  • A multimodal cell census and atlas of the mammalian primary motor cortex
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 598:7879, s. 86-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1–5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
  •  
7.
  • Carlevaro-Fita, J, et al. (författare)
  • Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis
  • 2020
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1, s. 56-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.
  •  
8.
  •  
9.
  •  
10.
  • Zhang, X, et al. (författare)
  • Body Composition-Specific Asthma Phenotypes: Clinical Implications
  • 2022
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 14:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Previous studies have indicated the limitations of body mass index for defining disease phenotypes. The description of asthma phenotypes based on body composition (BC) has not been largely reported. Objective: To identify and characterize phenotypes based on BC parameters in patients with asthma. Methods: A study with two prospective observational cohorts analyzing adult patients with stable asthma (n = 541 for training and n = 179 for validation) was conducted. A body composition analysis was performed for the included patients. A cluster analysis was conducted by applying a 2-step process with stepwise discriminant analysis. Logistic regression models were used to evaluate the association between identified phenotypes and asthma exacerbations (AEs). The same algorithm for cluster analysis in the independent validation set was used to perform an external validation. Results: Three clusters had significantly different characteristics associated with asthma outcomes. An external validation identified the similarity of the participants in training and the validation set. In the training set, cluster Training (T) 1 (29.4%) was “patients with undernutrition”, cluster T2 (18.9%) was “intermediate level of nutrition with psychological dysfunction”, and cluster T3 (51.8%) was “patients with good nutrition”. Cluster T3 had a decreased risk of moderate-to-severe and severe AEs in the following year compared with the other two clusters. The most important BC-specific factors contributing to being accurately assigned to one of these three clusters were skeletal muscle mass and visceral fat area. Conclusion: We defined three distinct clusters of asthma patients, which had distinct clinical features and asthma outcomes. Our data reinforced the importance of evaluating BC to determining nutritional status in clinical practice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 67

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy