SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Hongbing) srt2:(2020-2024)"

Sökning: WFRF:(Zhang Hongbing) > (2020-2024)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yu, Han, et al. (författare)
  • Study of the kinetics, mechanisms and catalysis activity of photo-electro degradation of organic pollutants via new neural network based methodology
  • 2023
  • Ingår i: Applied Catalysis B: Environmental. - : Elsevier BV. - 0926-3373. ; 323
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel calculation methodology containing modeling and statistics was developed to assist the experimental process for the investigation of organics treatment process. A continuous-flow photo-electro treatment of Norfloxacin (NOR) was chosen as a target subject. The methodology is based on a new synergistic work of reaction energy calculation, full-scanned neural network (NN) simulation and new physical kinetics modeling. Degradation kinetics, mechanisms and activity of degradation catalyst, etc., were studied. As a result, the reaction energy calculation figured out eight potential degradation pathways of NOR with the corresponding intermediate. NN process with fully scanned parameters showed dominating advantage compared to non-linear regression and first-order law in simulation work. With the obtained database from NN, the new physical model successfully distributed degradation contribution into direct, indirect and water flow routes. The new methodology helped to gain more valuable information with less experimental work, which guided the efficient and greener investigation process in corresponding studies.
  •  
2.
  • Xue, Ru, et al. (författare)
  • Variations of methane fluxes and methane microbial community composition with soil depth in the riparian buffer zone of a sponge city park
  • 2023
  • Ingår i: Journal of Environmental Management. - : Elsevier. - 0301-4797 .- 1095-8630. ; 339
  • Tidskriftsartikel (refereegranskat)abstract
    • Riparian buffers benefit both natural and man-made ecosystems by preventing soil erosion, retaining soil nu-trients, and filtering pollutants. Nevertheless, the relationship between vertical methane fluxes, soil carbon, and methane microbial communities in riparian buffers remains unclear. This study examined vertical methane fluxes, soil carbon, and methane microbial communities in three different soil depths (0-5 cm, 5-10 cm, and 10-15 cm) within a riparian buffer of a Sponge City Park for one year. Structural equation model (SEM) results demonstrated that vertical methane fluxes varied with soil depths (lambda =-0.37) and were primarily regulated by methanogenic community structure (lambda = 0.78). Notably, mathematical regression results proposed that mcrA/ pmoA ratio (R2 = 0.8) and methanogenic alpha diversity/methanotrophic alpha diversity ratio (R2 = 0.8) could serve as valid predictors of vertical variation in methane fluxes in the riparian buffer of urban river. These findings suggest that vertical variation of methane fluxes in riparian buffer soils is mainly influenced by carbon inputs and methane microbial abundance and community diversity. The study's results quantitatively the relationship between methane fluxes in riparian buffer soils and abiotic and biotic factors in the vertical di-rection, therefore contributing to the further development of mathematical models of soil methane emissions.
  •  
3.
  • Yu, Han, et al. (författare)
  • Degradation of Norfloxacin in saline water by synergistic effect of anode and cathode in a novel photo-electrochemical system
  • 2020
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 242
  • Tidskriftsartikel (refereegranskat)abstract
    • The removal and degradation of refractory antibiotics in saline water by electrochemical and photo-electrochemical catalysis has emerged as a worldwide research hotspot. Aiming to improve degradation performance, most of the concerned studies focus on new sophisticated materials and modification methods on the single working electrode (anode or cathode). But the synergistic effects between anode and cathode has rarely been studied, especially in photo-electrochemical system. In this work, these effects were initially developed and investigated in the photo-electrochemical system. In this work, a low-cost double-working electrodes photo-electrochemical system (TSSC-Photo) with Ti/SnO2-Sb anode and carbon black air diffusion cathode (TSSC) was constructed for Norfloxacin (NOR) degradation in saline water. The degradation efficiency, vital factors, degradation pathways were investigated. The mathematic modeling was adopted to distinguish the degradation kinetics and degradation contributions ratio from anode and cathode sides of this system. Owing to the synergistic effects of both electrodes, a rapidly complete NOR removal was achieved within 4 min and the highest TOC removal ratio reached 83.9% within 120 min. Free radicals (•Cl, •OH, etc) were considered as dominate oxidants in degradation with no activated chlorine (HClO/ClO−) detected from the electrolyte during the photo-electrolysis. The analysis based on the mathematic modeling indicated that anode acted as the only contributor (>97% of overall contribution) during the first 5 min of photo-electrolysis, whereas at the end of 120 min running, 21.4% of the total contribution came from cathode side. The remarkable performance of TSSC-Photo claimed its great capacity for organic matter degradation in saline water especially with Cl−.
  •  
4.
  • Yu, Han, et al. (författare)
  • Improved Norfloxacin degradation by urea precipitation Ti/SnO2–Sb anode under photo-electro catalysis and kinetics investigation by BP-neural-network-physical modeling
  • 2021
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 280
  • Tidskriftsartikel (refereegranskat)abstract
    • The photo-electro catalysis has emerged as efficient and sustainable degradation method for antibiotics, where metal oxide anode plays a critical role. Exploring novel preparation method for anodes catalysis to achieve larger active sites and diverse oxidants production can directly enhance the degradation performance. Therefore, in this work, a new urea precipitation method for anode formation was studied. Both novel urea precipitation Ti/SnO2–Sb anode (TSSA-U) and traditional electro-deposition Ti/SnO2–Sb anode (TSSA-E) were prepared for Norfloxacin degradation by photo-electro catalysis in saline water. A unique tubular Ti/SnO2–Sb units formatted by urea precipitation resulted in higher porosity. This led to dominating advantage for TSSA-U on photo/electrochemical activity and degradation performances by individual photo/electro catalysis, compared to TSSA-E. However, this gap of degradation performances shrank when synergistic effect of photo-electro catalysis involved. The highest TOC removal ratio of 91.1% was obtained from TSSA-U under photo-electro catalysis. Besides, a novel BP-neural-network-physical modeling (BP-ANN-P) was developed for analysis. According to this modeling, both direct (adsorption-degradation, radiation, etc.) and indirect (mainly •Cl) routes contributed significantly in degradation work by TSSA-U, where indirect route shared 41.8–90.1% of total degradation ratio. An increasing of current density (from 5 to 25 mA cm−2) enhanced the kinetics for both routes. Indirect route preferred pH = 3–7 with direct route enhanced by neutral condition. Moreover, indirect route also showed better adaptability with higher initial NOR loadings. Both urea precipitation and BP-ANN-P have shown their value for high performance material formation and data analysis, respectively. Notably, higher catalysis performance and better analysis connect to low energy cost, shorter running time and more efficient judgement and selection, which meets the requirement of cleaner production and environmental sustainability.
  •  
5.
  • Yu, Han, et al. (författare)
  • Study of SARS-CoV-2 transmission in urban environment by questionnaire and modeling for sustainable risk control
  • 2021
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894. ; 420
  • Tidskriftsartikel (refereegranskat)abstract
    • Caused by SARS-CoV-2, COVID-19 has become a severe threaten to society and human health, its epidemic control emerges as long-term issue. A sustainable epidemic and environmental transmission risk control (SEERC) in urban area is urgently needed. This work aims to conduct a new investigation on the transmission risk of SARS-COV-2 as virus/hazardous material through various environmental medias, routes and regions in the entirely urban area for guiding the SEERC. Specifically, 5 routes in 28 regions (totally 140 scenarios) are considered. For a new perspective, the risk evaluation is conducted by the quantification of frontline medicals staffs’ valuable experience in this work. 207 specialists responsible for the treatment of over 9000 infected patients are involved. The result showed that degree of risk was in the order of breath>contact-to-object>contact-to-human>intake>unknown. The modeling suggested source control as the prior measure for epidemic control. The combination of source control & mask wearing showed high efficiency in SEERC. The homeworking policy needed to cooperate with activity limitation to perform its efficiency. Subsequently, a new plan for SEERC was discussed. This work delivered significant information to researchers and decision makers for the further development of sustainable control for SARS-COV-2 spreading and COVID-19 epidemic.
  •  
6.
  • Zhang, Zhenzong, et al. (författare)
  • Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer
  • 2021
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 428
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel S-scheme photocatalytic heterojunction composite nanomaterial is developed by integrating zero-dimensional WO3 quantum dots (WQDs) on two-dimensional ultrathin CdIn2S4 (CIS) nanosheets with the aim of fostering carrier separation, enhancing the performance of carrier interface transport, minimizing carrier distance transport, and achieving effective photocatalytic CO2 reduction. The composite photocatalyst WQDs/CdIn2S4 (WCIS) allows for the efficient photocatalytic reduction of CO2 to CO and CH4, as shown by product analysis and isotopic measurement. The photogenerated electrons in WQDs recombine with the holes in CIS nanosheets, and the left electrons in CIS have stronger CO2 reduction abilities. The highest yields of CO and CH4 achieved with the WCIS photocatalyst are 8.2 and 1.6 μmol g-1h−1 ––2.6 and 8 times higher than those for CIS, respectively. Moreover, the S-scheme WCIS possesses a stable crystal structure and recycling ability. Finally, the S-scheme charge transfer path on the WCIS composite is proposed according to theoretical calculation, in-situ irradiated X-ray photoelectron spectroscopy, and electron paramagnetic resonance (ESR) analyses.
  •  
7.
  • Byun, Jinyoung, et al. (författare)
  • Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer
  • 2022
  • Ingår i: Nature Genetics. - : Nature Research. - 1061-4036 .- 1546-1718. ; 54:8, s. 1167-1177
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
  •  
8.
  • Chen, Jiajin, et al. (författare)
  • A trans-omics assessment of gene–gene interaction in early-stage NSCLC
  • 2023
  • Ingår i: Molecular Oncology. - : Wiley. - 1574-7891 .- 1878-0261. ; 17:1, s. 173-187
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenome-wide gene–gene (G × G) interactions associated with non-small-cell lung cancer (NSCLC) survival may provide insights into molecular mechanisms and therapeutic targets. Hence, we proposed a three-step analytic strategy to identify significant and robust G × G interactions that are relevant to NSCLC survival. In the first step, among 49 billion pairs of DNA methylation probes, we identified 175 775 G × G interactions with PBonferroni ≤ 0.05 in the discovery phase of epigenomic analysis; among them, 15 534 were confirmed with P ≤ 0.05 in the validation phase. In the second step, we further performed a functional validation for these G × G interactions at the gene expression level by way of a two-phase (discovery and validation) transcriptomic analysis, and confirmed 25 significant G × G interactions enriched in the 6p21.33 and 6p22.1 regions. In the third step, we identified two G × G interactions using the trans-omics analysis, which had significant (P ≤ 0.05) epigenetic cis-regulation of transcription and robust G × G interactions at both the epigenetic and transcriptional levels. These interactions were cg14391855 × cg23937960 (βinteraction = 0.018, P = 1.87 × 10−12), which mapped to RELA × HLA-G (βinteraction = 0.218, P = 8.82 × 10−11) and cg08872738 × cg27077312 (βinteraction = −0.010, P = 1.16 × 10−11), which mapped to TUBA1B × TOMM40 (βinteraction =−0.250, P = 3.83 × 10−10). A trans-omics mediation analysis revealed that 20.3% of epigenetic effects on NSCLC survival were significantly (P = 0.034) mediated through transcriptional expression. These statistically significant trans-omics G × G interactions can also discriminate patients with high risk of mortality. In summary, we identified two G × G interactions at both the epigenetic and transcriptional levels, and our findings may provide potential clues for precision treatment of NSCLC.
  •  
9.
  • Chi, Zexu, et al. (författare)
  • Coral-like WO3/BiVO4 photoanode constructed via morphology and facet engineering for antibiotic wastewater detoxification and hydrogen recovery
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 428
  • Tidskriftsartikel (refereegranskat)abstract
    • Morphology and facet engineering have been proved efficient strategies to prepare high-performance photoelectrochemical (PEC) materials. WO3/BiVO4 heterojunction photoanodes with different morphologies were prepared by simply controlling the amount of electrodeposited charge. The coral-like WO3/BiVO4 photoanode with the orientation growth of {110} and {011} active facets of BiVO4 exhibited the optimal PEC performance due to significantly enhanced separation and transfer of photogenerated charge carriers, while the exposure of {−121} facets showed negative effects. 4.71 mA·cm−2 and 2.9 mA·cm−2 of photocurrent densities were obtained for sulfite and water oxidation, respectively, superior to most reported results. Subsequently, a photoelectrochemical-chlorine (PEC-Cl) system was constructed for antibiotic wastewater detoxification with hydrogen recovery. The analysis results indicated that the system can quickly and effectively remove sulfamethoxazole and reduce its toxicity concurrent with high hydrogen yield. The reactive chlorine species (RCS), especially Cl2·− and ClO·, dominated the sulfamethoxazole removal. Possible degradation pathways of sulfamethoxazole were also elucidated.
  •  
10.
  • Chi, Zexu, et al. (författare)
  • The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy conversion and environment remediation : A review
  • 2022
  • Ingår i: Green Energy and Environment. - : Elsevier BV. - 2096-2797 .- 2468-0257. ; 7:3, s. 372-393
  • Forskningsöversikt (refereegranskat)abstract
    • Photoelectrochemical (PEC) technology has been proved a promising approach to solve the problems of energy shortages and environmental pollution damages. It can convert unlimited solar energy resources into energy forms needed by mankind. The development of highly efficient photoanodes is a key step in realizing the large-scale practical application of PEC systems. However, the development of PEC photoanodes has been severely hindered by the issues of easy recombination of photo-generated charge carriers, low photon-to-electron conversion efficiency, poor photo-corrosion resistance, and low catalytic activity. Therefore, constructing high-performance and stable photoanodes is an urgent research field to promote the progress of PEC technology. The atomically thin molybdenum disulfide (AT-MoS2) with unique physical and chemical properties has been widely applied in the fabrication of PEC photoanodes. The AT-MoS2 based photoanodes have exhibited excellent PEC performance, which providing promising candidates for ideal PEC application. Here, we summarize the fundamental natures of MoS2 and present the research efforts in the preparation of AT-MoS2 based photoanodes. Strategies for the fabrication of high-efficient AT-MoS2 based photoanodes are emphasized to provide guidelines to advance emerging PEC photoanodes. Besides, perspectives for the development of more efficient AT-MoS2 based photoanodes are proposed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy