SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Mingzhi) srt2:(2020-2022)"

Sökning: WFRF:(Zhang Mingzhi) > (2020-2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhu, Zhenshuo, et al. (författare)
  • Histone demethylase complexes KDM3A and KDM3B cooperate with OCT4/SOX2 to define a pluripotency gene regulatory network
  • 2021
  • Ingår i: The FASEB Journal. - : John Wiley & Sons. - 0892-6638 .- 1530-6860. ; 35:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The pluripotency gene regulatory network of porcine induced pluripotent stem cells(piPSCs), especially in epigenetics, remains elusive. To determine the biological function of epigenetics, we cultured piPSCs in different culture conditions. We found that activation of pluripotent gene- and pluripotency-related pathways requires the erasure of H3K9 methylation modification which was further influenced by mouse embryonic fibroblast (MEF) served feeder. By dissecting the dynamic change of H3K9 methylation during loss of pluripotency, we demonstrated that the H3K9 demethylases KDM3A and KDM3B regulated global H3K9me2/me3 level and that their co-depletion led to the collapse of the pluripotency gene regulatory network. Immunoprecipitation-mass spectrometry (IP-MS) provided evidence that KDM3A and KDM3B formed a complex to perform H3K9 demethylation. The genome-wide regulation analysis revealed that OCT4 (O) and SOX2 (S), the core pluripotency transcriptional activators, maintained the pluripotent state of piPSCs depending on the H3K9 hypomethylation. Further investigation revealed that O/S cooperating with histone demethylase complex containing KDM3A and KDM3B promoted pluripotency genes expression to maintain the pluripotent state of piPSCs. Together, these data offer a unique insight into the epigenetic pluripotency network of piPSCs.
  •  
2.
  • Zhang, Juqing, et al. (författare)
  • Super-enhancers conserved within placental mammals maintain stem cell pluripotency
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:40
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolu-tion in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in pla-cental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of plu-ripotency as well as species-specific modulation of the pluripotency-associated regula-tory networks in mammals.
  •  
3.
  • Yang, Chen, et al. (författare)
  • Nuclear IGF1R interact with PCNA to preserve DNA replication after DNA-damage in a variety of human cancers
  • 2020
  • Ingår i: PLOS ONE. - : Public Library Science. - 1932-6203. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Nuclear IGF1R has been linked to poor outcome in cancer. We recently showed that nuclear IGF1R phosphorylates PCNA and increases DNA damage tolerance. In this paper we aimed to describe this mechanism in cancer tissue as well as in cancer cell lines. In situ proximity ligation assay identified frequent IGF1R and PCNA colocalization in many cancer types. IGF1R/PCNA colocalization was more frequently increased in tumor cells than in adjacent normal, and more prominent in areas with dysplasia and invasion. However, the interaction was often lost in tumors with poor response to neoadjuvant treatment and most metastatic lesions. In two independent cohorts of serous ovarian carcinomas and oropharyngeal squamous cell carcinomas, stronger IGF1R/PCNA colocalization was significantly associated with a higher overall survival. Ex vivo irradiation of ovarian cancer tissue acutely induced IGF1R/PCNA colocalization together with ?H2AX-foci formations. In vitro, RAD18 mediated mono-ubiquitination of PCNA during replication stress was dependent on IGF1R kinase activity. DNA fiber analysis revealed that IGF1R activation could rescue stalled DNA replication forks, but only in cancer cells with baseline IGF1R/PCNA interaction. We believe that the IGF1R/PCNA interaction is a basic cellular mechanism to increase DNA stress tolerance during proliferation, but that this mechanism is lost with tumor progression in conjunction with accumulated DNA damage and aberrant strategies to tolerate genomic instability. To exploit this mechanism in IGF1R targeted therapy, IGF1R inhibitors should be explored in the context of concomitant induction of DNA replication stress as well as in earlier clinical stages than previously tried.
  •  
4.
  • Zhang, Juqing, et al. (författare)
  • Super enhancers-Functional cores under the 3D genome
  • 2021
  • Ingår i: Cell Proliferation. - : John Wiley & Sons. - 0960-7722 .- 1365-2184. ; 54:2
  • Forskningsöversikt (refereegranskat)abstract
    • Complex biochemical reactions take place in the nucleus all the time. Transcription machines must follow the rules. The chromatin state, especially the three-dimensional structure of the genome, plays an important role in gene regulation and expression. The super enhancers are important for defining cell identity in mammalian developmental processes and human diseases. It has been shown that the major components of transcriptional activation complexes are recruited by super enhancer to form phase-separated condensates. We summarize the current knowledge about super enhancer in the 3D genome. Furthermore, a new related transcriptional regulation model from super enhancer is outlined to explain its role in the mammalian cell progress.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy