SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Shujuan) srt2:(2020)"

Sökning: WFRF:(Zhang Shujuan) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Tianhao, et al. (författare)
  • Regenerated Bamboo-Derived Cellulose Fibers/RGO-Based Composite for High-Performance Supercapacitor Electrodes
  • 2020
  • Ingår i: 7th annual international conference on material science and environmental engineering. - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • Bamboo-derived cellulose fibers/RGO carbon aerogel composite was prepared by using a facile aerogel-based method, in which bamboo pulp fibers were dissolved and incorporated in an ionic liquid system, and RGO was introduced by thermal reduction approach. The obtained bamboo-derived cellulose fibers/RGO carbon aerogel composite shows a large specific surface area, and excellent electrochemical performance. When the GO content was 2.5 wt%, the obtained composite showed a high specific surface area of 1957 m(2)/g, and high specific capacitance of 351 F/g in 6 M KOH electrolyte solution even with a more than 90% capacitance retention at a high scan rate of 200 mV/s. The bamboo-derived cellulose fibers/RGO composite electrodes show the low equivalent series resistance of 5.0 Omega and small charge transfer resistance of 0.30 Omega which further demonstrate the excellent electrochemical behaviors.
  •  
2.
  • Teh, Zhi Li, et al. (författare)
  • Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:20, s. 22751-22759
  • Tidskriftsartikel (refereegranskat)abstract
    • PbS quantum dot solar cells (QDSCs) have emerged as a promising low-cost, solution-processable solar energy harvesting device and demonstrated good air stability and potential for large-scale commercial implementation. PbS QDSCs achieved a record certified efficiency of 12% in 2018 by utilizing an n+–n–p device structure. However, the p-type layer has generally suffered from low carrier mobility due to the organic ligand 1,2-ethanedithiol (EDT) that is used to modify the quantum dot (QD) surface. The low carrier mobility of EDT naturally limits the device thickness as the carrier diffusion length is limited by the low mobility. Herein, we improve the properties of the p-type layer through a two-step hybrid organic ligand treatment. By treating the p-type layer with two types of ligands, 3-mercaptopropionic acid (MPA) and EDT, the PbS QD surface was passivated by a combination of the two ligands, resulting in an overall improvement in open-circuit voltage, fill factor, and current density, leading to an improvement in the cell efficiency from 7.0 to 10.4% for the champion device. This achievement was a result of the improved QD passivation and a reduction in the interdot distance, improving charge transport through the p-type PbS quantum dot film.
  •  
3.
  • Yang, Shujuan, et al. (författare)
  • Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils
  • 2020
  • Ingår i: International Journal of Biological Macromolecules. - : ELSEVIER. - 0141-8130 .- 1879-0003. ; 151, s. 159-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose acetate (CA) ultrafiltration membranes are attracting more attention in wastewater purification due to its biodegradability and eco-friendly. The application of CA membranes, however, is limited by high susceptibility to bacterial corrosion and lack of mechanical tolerance that results in loss of life. To solve the above problems, we first fabricated the CA-based composite membranes incorporated with bamboo-based lignocellulose nanofibrils (LCNFs) by a strategy of phase inversion. LCNFs was prepared by using a combined method of one-step chemical pretreatment and add hydrolysis coupled with high-pressure homogenization. The as-prepared CA/LCNFs composite membranes with 4 wt% lignin in the LCNFs exhibited high tensile strength of 7.08 MPa and strain-at-break of 12.21%, and high filtration permeability of 188.23 L. m(-2).h(-1) as ultrafiltration membranes for wastewater treatment, which could obviously inhibit the growth of Escherichia Coli.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy