SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Wenxin) srt2:(2015-2019)"

Sökning: WFRF:(Zhang Wenxin) > (2015-2019)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Xia, Jianyang, et al. (författare)
  • Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region
  • 2017
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 122:2, s. 430-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246±6gCm-2yr-1), most models produced higher NPP (309±12gCm-2yr-1) over the permafrost region during 2000-2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982-2009, there was a twofold discrepancy among models (380 to 800gCm-2yr-1), which mainly resulted from differences in simulated maximum monthly GPP (GPPmax). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change.
  •  
2.
  • Akperov, Mirseid, et al. (författare)
  • Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)
  • 2018
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996 .- 2169-897X. ; 123:5, s. 2537-2554
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.
  •  
3.
  • Akperov, Mirseid, et al. (författare)
  • Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX)
  • 2019
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 182
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in the characteristics of cyclone activity (frequency, depth and size) in the Arctic are analyzed based on simulations with state-of-the-art regional climate models (RCMs) from the Arctic-CORDEX initiative and global climate models (GCMs) from CMIP5 under the Representative Concentration Pathway (RCP) 8.5 scenario. Most of RCMs show an increase of cyclone frequency in winter (DJF) and a decrease in summer (JJA) to the end of the 21st century. However, in one half of the RCMs, cyclones become weaker and substantially smaller in winter and deeper and larger in summer. RCMs as well as GCMs show an increase of cyclone frequency over the Baffin Bay, Barents Sea, north of Greenland, Canadian Archipelago, and a decrease over the Nordic Seas, Kara and Beaufort Seas and over the sub-arctic continental regions in winter. In summer, the models simulate an increase of cyclone frequency over the Central Arctic and Greenland Sea and a decrease over the Norwegian and Kara Seas by the end of the 21st century. The decrease is also found over the high-latitude continental areas, in particular, over east Siberia and Alaska. The sensitivity of the RCMs' projections to the boundary conditions and model physics is estimated. In general, different lateral boundary conditions from the GCMs have larger effects on the simulated RCM projections than the differences in RCMs' setup and/or physics.
  •  
4.
  • Attié, David, et al. (författare)
  • A time projection chamber with GEM-based readout
  • 2017
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 856, s. 109-118
  • Tidskriftsartikel (refereegranskat)abstract
    • For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1. T solenoidal field and read out with three independent Gas Electron Multiplier (GEM) based readout modules, are reported. The TPC was exposed to a 6. GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.
  •  
5.
  • Kasimir, Åsa, 1956, et al. (författare)
  • Lower greenhouse gas flux and better economy with wetter peat soil use
  • 2019
  • Ingår i: Geophysical Research AbstractsVol. 21, EGU2019-14821, 2019.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We have used the CoupModel to investigate effects of 80 years of peatland use on greenhouse gas (GHG) emissions for four scenarios (1) business as usual - Norway spruce with average soil water table depth (WTD) of -40 cm; (2) willow plantation with WTD at -20 cm; (3) reed canary grass production with WTD at -10 cm; and (4) a fully rewetted peatland with no harvested product. Total soil GHG emissions for the scenarios were (including litter and peat respiration CO2 emissions as well as N2O and CH4) on average 33, 19, 15, and 11 Mg CO2eq ha-1year-1. No peat was lost for the wet peatland. At WTD -10 cm GHG emissions were at a minimum. Economy was analyzed by a cost–benefit analysis (CBA) where scenario (1) with spruce included gain from sold products like timber, pulpwood and energy biomass, and scenarios (2) and (3) harvests were for bioenergy purpose. Stored C in biomass and litter was included as gains, as well as biodiversity gains for the rewetted scenario. Costs included management and soil emissions. The CBA showed on average the best result for the rewetted peatland (4) and next were willow (2) together with reed canary grass (3), while spruce (1) production economic benefit was the lowest. This showed wetter condition to be a gain for the climate as well as for the economy. Questions to resolve are influences of fluctuating water tables and vegetation types on CH4 and N2O emission as well as DOC/DON loss etc. Continuation Clear-cut of forest followed by either continued forest or wetland restoration. We are now to clear-cut the mature spruce forest at Skogaryd research station, on which the model was calibrated. Half the area will then still be drained and planted with spruce and the other half rewetted to a wet meadow by building a dam. Collection of ecosystem and flux data will continue. We will now use the model to investigate the two scenarios, where we are most interested in effects on GHG and water DOC/DON losses, results presented here.We will also gain further knowledge on GHG and other losses from agricultural peat soils in the project Climate Smart Use of Norwegian organic soils (MYR). We will calibrate the CoupModel on data generated from the project and use it for investigating alternative land use options (wetter soil and lower management intensity at cultivated peatlands). In this later step, we want co-operate with research groups using other models.
  •  
6.
  • Kasimir, Åsa, 1956, et al. (författare)
  • Spruce forest on drained peat – clear-cut winter 2019, half replanted and half rewetted into meadow
  • 2019
  • Ingår i: Abstract Book. pp 128.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We have used the CoupModel to investigate effects on GHG emissions as well as on economy of 80 years of peatland use for four scenarios (1) business as usual – Norway spruce with average soil water table depth (WTD) of -40 cm; (2) willow plantation with WTD at -20 cm; (3) reed canary grass production with WTD at -10 cm; and (4) a fully rewetted peatland with no harvested product. Total soil GHG emissions for the scenarios were (including litter and peat respiration CO2 emissions as well as N2O and CH4) on average 33, 19, 15, and 11 Mg CO2eq ha-1 yr-1. No peat was lost for the wet peatland. GHG emissions were at a minimum at WTD -10 cm. Economy was analyzed by a cost – benefit analysis (CBA) where scenario (1) with spruce included gain from sold products like timber, pulpwood and energy biomass, and scenarios (2) and (3) gains from energy biomass. Gains over the 80 years resulted also from stored C in biomass and litter as well as biodiversity for scenario (4). Costs included management and soil emissions. The CBA showed on average the best result for the rewetted peatland (4) while spruce (1) production’s economic benefit was the lowest. We are now about to clear-cut the mature spruce forest at Skogaryd research station, on which the model was calibrated. Half the area will then still be drained and planted with spruce and the other half rewetted to a wet meadow by building a dam. Collection of ecosystem and flux data has been extensive for more than a decennia and will continue. Researchers are invited for investigations following the changes taking place after the clear cut. We will present projected losses to air and water estimated by the CoupModel.
  •  
7.
  • McGuire, A. David, et al. (författare)
  • Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:7, s. 1015-1037
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8x10(3)km(2)yr(-1)). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954TgCyr(-1) between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982-2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.
  •  
8.
  • Metcalfe, Daniel B., et al. (författare)
  • Patchy field sampling biases understanding of climate change impacts across the Arctic
  • 2018
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:9, s. 1443-1448
  • Tidskriftsartikel (refereegranskat)abstract
    • Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.
  •  
9.
  • Parmentier, Frans-Jan, et al. (författare)
  • Rising methane emissions from northern wetlands associated with sea ice decline
  • 2015
  • Ingår i: Geophysical Research Letters. - 1944-8007. ; 42:17, s. 7214-7222
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tg CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.
  •  
10.
  • Peng, S., et al. (författare)
  • Simulated high-latitude soil thermal dynamics during the past 4 decades
  • 2016
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0424. ; 10:1, s. 179-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr−1. Most models show smaller increase in Ts with increasing depth. Air temperature (Tsub>a) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr−1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr−1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = −0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = −0.30, P = 0.438). The sensitivity of the total boreal near-surface permafrost area to Ts at 1 m is estimated to be of −2.80 ± 0.67 million km2 °C−1. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and Ts across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000. This corresponds to 9–18 % degradation of the current permafrost area.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Zhang, Wenxin (16)
Smith, Benjamin (5)
Rinke, Annette (5)
Jansson, Per-Erik. (5)
McGuire, A. David (4)
Miller, Paul A. (4)
visa fler...
Ciais, Philippe (3)
Koven, Charles (3)
Peng, Shushi (3)
Chen, Xiaodong (3)
Gouttevin, Isabelle (3)
Ji, Duoying (3)
Delire, Christine (3)
Hajima, Tomohiro (3)
Krinner, Gerhard (3)
Moore, John C (3)
Hayes, Daniel J. (3)
Saito, Kazuyuki (3)
Alkama, Ramdane (3)
Bohn, Theodore J. (3)
Decharme, Bertrand (3)
Lettenmaier, Dennis ... (3)
Miller, Paul (2)
Luo, Yiqi (2)
Akperov, Mirseid (2)
Mokhov, Igor I. (2)
Matthes, Heidrun (2)
Semenov, Vladimir A. (2)
Adakudlu, Muralidhar (2)
Christensen, Jens H. (2)
Dembitskaya, Mariya ... (2)
Dethloff, Klaus (2)
Fettweis, Xavier (2)
Gutjahr, Oliver (2)
Heinemann, Günther (2)
Koenigk, Torben (2)
Laprise, René (2)
Mottram, Ruth (2)
Nikiéma, Oumarou (2)
Sein, Dmitry (2)
Sobolowski, Stefan (2)
Winger, Katja (2)
Lawrence, David M. (2)
Burke, Eleanor (2)
Chen, Guangsheng (2)
Klemedtsson, Leif, 1 ... (2)
Kasimir, Åsa, 1956 (2)
Zhuang, Qianlai (2)
Wu, Mousong (2)
MacDougall, Andrew H ... (2)
visa färre...
Lärosäte
Lunds universitet (15)
Göteborgs universitet (3)
Stockholms universitet (3)
Kungliga Tekniska Högskolan (2)
Umeå universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)
Lantbruksvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy