SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Zhi Guo) srt2:(2020-2024)"

Sökning: WFRF:(Zhang Zhi Guo) > (2020-2024)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Bai, Yang, et al. (författare)
  • Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells
  • 2023
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-alpha with a 2, 5-substitution and TDY-beta with 3, 4-substitution on the core. It shows that TDY-alpha processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-beta, and amore stablemorphology with the polymer donor. As a result, the TDY-alpha based device delivers a higher device efficiency of 18.1%, and most important, achieves an extrapolated lifetime of about 35000 hours that retaining 80% of their initial efficiency. Our result suggests that with proper geometry design, the tethered small-molecule acceptors can achieve both high device efficiency and operating stability.
  •  
3.
  • Li, Shangyu, et al. (författare)
  • Tethered Small-Molecule Acceptors Simultaneously Enhance the Efficiency and Stability of Polymer Solar Cells
  • 2023
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 35
  • Tidskriftsartikel (refereegranskat)abstract
    • For polymer solar cells (PSCs), the mixture of polymer donors and small-molecule acceptors (SMAs) is fine-tuned to realize a favorable kinetically trapped morphology and thus a commercially viable device efficiency. However, the thermodynamic relaxation of the mixed domains within the blend raises concerns related to the long-term operational stability of the devices, especially in the record-holding Y-series SMAs. Here, a new class of dimeric Y6-based SMAs tethered with differential flexible spacers is reported to regulate their aggregation and relaxation behavior. In their polymer blends with PM6, it is found that they favor an improved structural order relative to that of Y6 counterpart. Most importantly, the tethered SMAs show large glass transition temperatures to suppress the thermodynamic relaxation in mixed domains. For the high-performing dimeric blend, an unprecedented open circuit voltage of 0.87 V is realized with a conversion efficiency of 17.85%, while those of regular Y6-base devices only reach 0.84 V and 16.93%, respectively. Most importantly, the dimer-based device possesses substantially reduced burn-in efficiency loss, retaining more than 80% of the initial efficiency after operating at the maximum power point under continuous illumination for 700 h. The tethering approach provides a new direction to develop PSCs with high efficiency and excellent operating stability.
  •  
4.
  • Pecunia, Vincenzo, et al. (författare)
  • Roadmap on energy harvesting materials
  • 2023
  • Ingår i: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
5.
  • You, Xiaohu, et al. (författare)
  • Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts
  • 2021
  • Ingår i: Science China Information Sciences. - : Science Press. - 1674-733X .- 1869-1919. ; 64:1
  • Forskningsöversikt (refereegranskat)abstract
    • The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
  •  
6.
  • Zhang, Ming, et al. (författare)
  • Tethered Small-Molecule Acceptor Refines Hierarchical Morphology in Ternary Polymer Solar Cells: Enhanced Stability and 19% Efficiency
  • 2023
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095.
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer solar cells (PSCs) are promising for efficient solar energy conversion, but achieving high efficiency and device longevity within a bulk-heterojunction (BHJ) structure remains a challenge. Traditional small-molecule acceptors (SMAs) in the BHJ blend show thermodynamic instability affecting the morphology. In contrast, tethered SMAs exhibit higher glass transition temperatures, mitigating these concerns. Yet, they might not integrate well with polymer donors, causing pronounced phase separation and overpurification of mixed domains. Herein, a novel ternary device is introduced that uses DY-P2EH, a tethered dimeric SMA with conjugated side-chains as host acceptor, and BTP-ec9, a monomeric SMA as secondary acceptor, which respectively possess hypomiscibility and hypermiscibility with the polymer donor PM6. This unique combination affords a parallel-connected ternary BHJ blend, leading to a hierarchical and stable morphology. The ternary device achieves a remarkable fill factor of 80.61% and an impressive power conversion efficiency of 19.09%. Furthermore, the ternary device exhibits exceptional stability, retaining over 85% of its initial efficiency even after enduring 1100 h of thermal stress at 85 degrees C. These findings highlight the potential advantage of tethered SMAs in the design of ternary devices with a refined hierarchical structure for more efficient and durable solar energy conversion technologies. A ternary-device design is proposed that fully utilizes the individual thermodynamic properties of both dimeric acceptor and monomeric acceptor. The high Tg value of dimeric acceptor significantly impedes the molecular movement of monomeric acceptor, while hypermiscible properties of monomeric acceptor promote percolation of the mixed domain for enhancing charge dynamics.image
  •  
7.
  • Zhang, Xiao-Jie, et al. (författare)
  • Auto-suppression of Tet dioxygenases protects the mouse oocyte genome from oxidative demethylation
  • 2024
  • Ingår i: Nature Structural & Molecular Biology. - : NATURE PORTFOLIO. - 1545-9993 .- 1545-9985. ; 31:1
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA cytosine methylation plays a vital role in repressing retrotransposons, and such derepression is linked with developmental failure, tumorigenesis and aging. DNA methylation patterns are formed by precisely regulated actions of DNA methylation writers (DNA methyltransferases) and erasers (TET, ten-eleven translocation dioxygenases). However, the mechanisms underlying target-specific oxidation of 5mC by TET dioxygenases remain largely unexplored. Here we show that a large low-complexity domain (LCD), located in the catalytic part of Tet enzymes, negatively regulates the dioxygenase activity. Recombinant Tet3 lacking LCD is shown to be hyperactive in converting 5mC into oxidized species in vitro. Endogenous expression of the hyperactive Tet3 mutant in mouse oocytes results in genome-wide 5mC oxidation. Notably, the occurrence of aberrant 5mC oxidation correlates with a consequent loss of the repressive histone mark H3K9me3 at ERVK retrotransposons. The erosion of both 5mC and H3K9me3 causes ERVK derepression along with upregulation of their neighboring genes, potentially leading to the impairment of oocyte development. These findings suggest that Tet dioxygenases use an intrinsic auto-regulatory mechanism to tightly regulate their enzymatic activity, thus achieving spatiotemporal specificity of methylome reprogramming, and highlight the importance of methylome integrity for development. Here the authors show that TET dioxygenases, the erasers of DNA methylation, use a self-limiting mechanism via their LCD domain to ensure adaptable methylome status and protect the genome from excessive oxidative methylation.
  •  
8.
  • Zhang, Zhuo-Zhi, et al. (författare)
  • A suspended silicon single-hole transistor as an extremely scaled gigahertz nanoelectromechanical beam resonator
  • 2020
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 32:52
  • Tidskriftsartikel (refereegranskat)abstract
    • Suspended single-hole transistors (SHTs) can also serve as nanoelectromechanical resonators, providing an ideal platform for investigating interactions between mechanical vibrations and charge carriers. Demonstrating such a device in silicon (Si) is of particular interest, due to the strong piezoresistive effect of Si and potential applications in Si-based quantum computation. Here, a suspended Si SHT also acting as a nanoelectromechanical beam resonator is demonstrated. The resonant frequency and zero-point motion of the device are approximate to 3 GHz and 0.2 pm, respectively, reaching the best level among similar devices demonstrated with Si-containing materials. The mechanical vibration is transduced to electrical readout by the SHT. The signal transduction mechanism is dominated by the piezoresistive effect. A giant apparent effective piezoresistive gauge factor with strong correlation to single-hole tunneling is extracted in this device. The results show the great potential of the device in interfacing charge carriers with mechanical vibrations, as well as investigating potential quantum behavior of the vibration phonon mode.
  •  
9.
  • Feigin, Valery L., et al. (författare)
  • Global, regional, and national burden of stroke and its risk factors, 1990-2019 : a systematic analysis for the Global Burden of Disease Study 2019
  • 2021
  • Ingår i: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 20:10, s. 795-820
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12.2 million (95% UI 11.0-13.6) incident cases of stroke, 101 million (93.2-111) prevalent cases of stroke, 143 million (133-153) DALYs due to stroke, and 6.55 million (6.00-7.02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11.6% [10.8-12.2] of total deaths) and the third-leading cause of death and disability combined (5.7% [5.1-6.2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70.0% (67.0-73.0), prevalent strokes increased by 85.0% (83.0-88.0), deaths from stroke increased by 43.0% (31.0-55.0), and DALYs due to stroke increased by 32.0% (22.0-42.0). During the same period, age-standardised rates of stroke incidence decreased by 17.0% (15.0-18.0), mortality decreased by 36.0% (31.0-42.0), prevalence decreased by 6.0% (5.0-7.0), and DALYs decreased by 36.0% (31.0-42.0). However, among people younger than 70 years, prevalence rates increased by 22.0% (21.0-24.0) and incidence rates increased by 15.0% (12.0-18.0). In 2019, the age-standardised stroke-related mortality rate was 3.6 (3.5-3.8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3.7 (3.5-3.9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62.4% of all incident strokes in 2019 (7.63 million [6.57-8.96]), while intracerebral haemorrhage constituted 27.9% (3.41 million [2.97-3.91]) and subarachnoid haemorrhage constituted 9.7% (1.18 million [1.01-1.39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79.6 million [67.7-90.8] DALYs or 55.5% [48.2-62.0] of total stroke DALYs), high body-mass index (34.9 million [22.3-48.6] DALYs or 24.3% [15.7-33.2]), high fasting plasma glucose (28.9 million [19.8-41.5] DALYs or 20.2% [13.8-29.1]), ambient particulate matter pollution (28.7 million [23.4-33.4] DALYs or 20.1% [16.6-23.0]), and smoking (25.3 million [22.6-28.2] DALYs or 17.6% [16.4-19.0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.
  •  
10.
  • Guo, Junji, et al. (författare)
  • Unprecedented Electrochromic Stability of a-WO3-x Thin Films Achieved by Using a Hybrid-Cationic Electrolyte
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:9, s. 11067-11077
  • Tidskriftsartikel (refereegranskat)abstract
    • With large interstitial space volumes and fast ion diffusion pathways, amorphous metal oxides as cathodic intercalation materials for electrochromic devices have attracted attention. However, these incompact thin films normally suffer from two inevitable imperfections: self-deintercalation of guest ions and poor stability of the structure, which constitute a big obstacle toward the development of high-stable commercial applications. Here, we present a low-cost, eco-friendly hybrid cation 1,2-PG-AlCl3 center dot 6H(2)O electrolyte, in which the sputter-deposited a-WO3-x thin film can exhibit both the long-desired excellent open-circuit memory (>100 h, with zero optical loss) and super-long cycling lifetime (similar to 20,000 cycles, with 80% optical modulation), benefiting from the formation of unique Al-hydroxide-based solid electrolyte interphase during electrochromic operations. In addition, the optical absorption behaviors in a-WO3-x caused by host-guest interactions were elaborated. We demonstrated that the intervalence transfers are primarily via the "corner-sharing" related path (W5+ <-> W6+) but not the "edge-sharing" related paths (W4+ <-> W6+ and/or W4+ <-> W5+), and the small polaron/electron transfers taking place at the W-O bond-breaking positions are not allowed. Our findings might provide in-depth insights into the nature of electrochromism and provide a significant step in the realization of more stable, more excellent electrochromic applications based on amorphous metal oxides.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28
Typ av publikation
tidskriftsartikel (27)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Zhao, Wei (5)
Gao, Feng (5)
Zhang, Zhi-Guo (5)
Bai, Yang (4)
Wang, Xiao-Ru (4)
Zhang, Rui (4)
visa fler...
Liu, Hui (3)
Zhang, Zhi-Bin (3)
Chen, Qi (3)
Li, Yongfang (3)
He, Sailing (3)
Chang, Bowen (3)
Li, Shangyu (3)
Guo, Tingbiao (3)
Wang, Mei (2)
Jin, Yi (2)
Brenner, Hermann (2)
Bensenor, Isabela M. (2)
Carrero, Juan J. (2)
Farzadfar, Farshad (2)
Khader, Yousef Saleh (2)
Kumar, G. Anil (2)
Lallukka, Tea (2)
Thrift, Amanda G. (2)
Tran, Bach Xuan (2)
Vasankari, Tommi Juh ... (2)
Vu, Giang Thu (2)
Bennett, Derrick A. (2)
Khubchandani, Jagdis ... (2)
Majeed, Azeem (2)
Tonelli, Marcello (2)
Norrving, Bo (2)
Xu, Jie (2)
Molokhia, Mariam (2)
La Vecchia, Carlo (2)
Wang, Li (2)
Hanif, Asif (2)
Liu, Ting (2)
Zhou, Qiuju (2)
Zhang, Cen (2)
Fu, Hongyuan (2)
Wang, Haiqiao (2)
Ouyang, Yanni (2)
Zhang, Chunfeng (2)
Shibuya, Kenji (2)
Beghi, Ettore (2)
Musa, Kamarul Imran (2)
Iso, Hiroyasu (2)
Abd-Allah, Foad (2)
Chu, Dinh-Toi (2)
visa färre...
Lärosäte
Umeå universitet (7)
Linköpings universitet (7)
Uppsala universitet (6)
Kungliga Tekniska Högskolan (4)
Mittuniversitetet (2)
Chalmers tekniska högskola (2)
visa fler...
Karolinska Institutet (2)
Högskolan Dalarna (2)
Göteborgs universitet (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Teknik (3)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy