SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Zhao Fangwei)
 

Sökning: WFRF:(Zhao Fangwei) > (2022) > Identification of e...

Identification of electroporation sites in the complex lipid organization of the plasma membrane

Rems, Lea (författare)
KTH,Biofysik,Science for Life Laboratory, SciLifeLab,Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia.
Tang, Xinru (författare)
KTH,Tillämpad fysik,Science for Life Laboratory, SciLifeLab,Univ Chinese Acad Sci, Beijing, Peoples R China.
Zhao, Fangwei (författare)
KTH,Tillämpad fysik,Science for Life Laboratory, SciLifeLab,Univ Chinese Acad Sci, Beijing, Peoples R China.
visa fler...
Perez-Conesa, Sergio (författare)
KTH,Tillämpad fysik,Science for Life Laboratory, SciLifeLab
Testa, Ilaria (författare)
KTH,Biofysik,Science for Life Laboratory, SciLifeLab
Delemotte, Lucie (författare)
KTH,Biofysik,Science for Life Laboratory, SciLifeLab
visa färre...
 (creator_code:org_t)
eLife Sciences Publications, Ltd, 2022
2022
Engelska.
Ingår i: eLIFE. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The plasma membrane of a biological cell is a complex assembly of lipids and membrane proteins, which tightly regulate transmembrane transport. When a cell is exposed to strong electric field, the membrane integrity becomes transiently disrupted by formation of transmembrane pores. This phenomenon termed electroporation is already utilized in many rapidly developing applications in medicine including gene therapy, cancer treatment, and treatment of cardiac arrhythmias. However, the molecular mechanisms of electroporation are not yet sufficiently well understood; in particular, it is unclear where exactly pores form in the complex organization of the plasma membrane. In this study, we combine coarse-grained molecular dynamics simulations, machine learning methods, and Bayesian survival analysis to identify how formation of pores depends on the local lipid organization. We show that pores do not form homogeneously across the membrane, but colocalize with domains that have specific features, the most important being high density of polyunsaturated lipids. We further show that knowing the lipid organization is sufficient to reliably predict poration sites with machine learning. Additionally, by analysing poration kinetics with Bayesian survival analysis we show that poration does not depend solely on local lipid arrangement, but also on membrane mechanical properties and the polarity of the electric field. Finally, we discuss how the combination of atomistic and coarse-grained molecular dynamics simulations, machine learning methods, and Bayesian survival analysis can guide the design of future experiments and help us to develop an accurate description of plasma membrane electroporation on the whole-cell level. Achieving this will allow us to shift the optimization of electroporation applications from blind trial-and-error approaches to mechanistic-driven design.

Ämnesord

NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)

Nyckelord

electroporation
molecular dynamics simulations
membrane structure
phospholipids
glycolipids
gangliosides
machine learning
None

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

  • eLIFE (Sök värdpublikationen i LIBRIS)

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy