SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Ruqian) srt2:(2016)"

Sökning: WFRF:(Zhao Ruqian) > (2016)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cai, Demin, et al. (författare)
  • Expression of hepatic miRNAs targeting porcine glucocorticoid receptor (GR) 3'UTR in the neonatal piglets under a maternal gestational betaine supplementation
  • 2016
  • Ingår i: Data in Brief. - : Elsevier BV. - 2352-3409. ; 6, s. 4-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucocorticoid receptor (GR) has been previously demonstrated an important transcriptional factor of hepatic metabolic genes in the neonates under a maternal gestational betaine supplementation ("Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms" Cai et al., 2015 [1]). Here we provide accompanying data about the expression of hepatic miRNAs targeting porcine GR 3'UTR in the neonatal piglets. Liver samples were obtained and RNA was isolated. RNA was polyadenylated by poly (A) polymerase and then dissolved and reverse transcribed using poly (T) adapter. The diluted cDNA were used in each real-time PCR assay. The sequences of all the porcine miRNAs were acquired from miRBase (http://www.mirbase.org/). miRNAs targeting GR were predicted using the PITA algorithm. Among all the predicted miRNAs, 4 miRNAs targeting GR were quantitated by real-time PCR and miRNA-124a, which has been identified to target GR 3'UTR [2], [3], was more highly expressed in betaine-exposed neonatal livers.
  •  
2.
  • Cai, Demin, et al. (författare)
  • Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms
  • 2016
  • Ingår i: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. - : Elsevier BV. - 1388-1981 .- 1879-2618. ; 1861:1, s. 41-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Methyl donors play critical roles in nutritional programming through epigenetic regulation of gene expression. Here we fed gestational sows with control or betaine-supplemented diets (3 g/kg) throughout the pregnancy to explore the effects of maternal methyl-donor nutrient on neonatal expression of hepatic lipogenic genes. Betaine-exposed piglets demonstrated significantly lower liver triglyceride content associated with down-regulated hepatic expression of lipogenic genes acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD) and sterol regulatory element-binding protein-1c. Moreover, s-adenosyl methionine to s-adenosyl homocysteine ratio was elevated in the liver of betaine-exposed piglets, which was accompanied by DNA hypermethylation on FAS and SCD gene promoters and more enriched repression histone mark H31K27me3 on SCD gene promoter. Furthermore, glucocorticoid receptor (GR) binding to SCD gene promoter was diminished along with reduced serum cortisol and liver GR protein content in betaine-exposed piglets. GR-mediated SCD gene regulation was confirmed in HepG2 cells in vitro. Dexamethasone (Dex) drastically increased the luciferase activity of porcine SCD promoter, while the deletion of GR response element on SCD promoter significantly attenuated Dex-mediated SCD transactivation. In addition, miR-let-7e, miR-1285 and miR-124a, which respectively target porcine SCD, ACC and GR, were significantly up-regulated in the liver of betaine-exposed piglets, being in accordance with decreased protein content of these three genes. Taken together, our results suggest that maternal dietary betaine supplementation during gestation attenuates hepatic lipogenesis in neonatal piglets via epigenetic and GR-mediated mechanisms.
  •  
3.
  • Cai, Demin, et al. (författare)
  • Maternal Betaine Supplementation throughout Gestation and Lactation Modifies Hepatic Cholesterol Metabolic Genes in Weaning Piglets via AMPK/LXR-Mediated Pathway and Histone Modification
  • 2016
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 8:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Betaine serves as an animal and human nutrient which has been heavily investigated in glucose and lipid metabolic regulation, yet the underlying mechanisms are still elusive. In this study, feeding sows with betaine-supplemented diets during pregnancy and lactation increased cholesterol content and low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI) gene expression, but decreasing bile acids content and cholesterol-7a-hydroxylase (CYP7a1) expression in the liver of weaning piglets. This was associated with the significantly elevated serum betaine and methionine levels and hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) content. Concurrently, the hepatic nuclear transcription factor liver X receptor LXR was downregulated along with activated signal protein AMP-activated protein kinase (AMPK). Moreover, a chromatin immunoprecipitation assay showed lower LXR binding on CYP7a1 gene promoter and more enriched activation histone marker H3K4me3 on LDLR and SR-BI promoters. These results suggest that gestational and lactational betaine supplementation modulates hepatic gene expression involved in cholesterol metabolism via an AMPK/LXR pathway and histone modification in the weaning offspring.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Liu, Haoyu (3)
Cai, Demin (3)
Yuan, Mengjie (3)
Zhao, Ruqian (3)
Pan, Shifeng (2)
Jia, Yimin (2)
visa fler...
Wang, Junjian (1)
Dong, Haibo (1)
Ma, Wenqiang (1)
Hong, Jian (1)
visa färre...
Lärosäte
Uppsala universitet (3)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (3)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy