SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Yichen) srt2:(2016)"

Sökning: WFRF:(Zhao Yichen) > (2016)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • El-Sayed, Ramy, et al. (författare)
  • Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6 beta-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.
  •  
2.
  • Lobov, Gleb, et al. (författare)
  • Dynamic manipulation of optical anisotropy of suspended Poly-3-hexylthiophene nanofibers
  • 2016
  • Ingår i: Advanced Optical Materials. - : Wiley. - 2162-7568 .- 2195-1071. ; 4:10, s. 1651-1656
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-3-hexylthiophene (P3HT) nanofibers are 1D crystalline semiconducting nanostructures, which are known for their application in photovoltaics. Due to the internal arrangement, P3HT nanofibers possess optical anisotropy, which can be enhanced on a macroscale if nanofibers are aligned. Alternating electric field, applied to a solution with dispersed nanofibers, causes their alignment and serves as a method to produce solid layers with ordered nanofibers. The transmission ellipsometry measurements demonstrate the dichroic absorption and birefringence of ordered nanofibers in a wide spectral range of 400–1700 nm. Moreover, the length of nanofibers has a crucial impact on their degree of alignment. Using electric birefringence technique, it is shown that external electric field applied to the solution with P3HT nanofibers can cause direct birefringence modulation. Dynamic alignment of dispersed nanofibers changes the refractive index of the solution and, therefore, the polarization of transmitted light. A reversible reorientation of nanofibers is organized by using a quadrupole configuration of poling electrodes. With further development, the described method can be used in the area of active optical fiber components, lab-on-chip or sensors. It also reveals the potential of 1D conducting polymeric structures as objects whose highly anisotropic properties can be implemented in electro-optical applications.​.
  •  
3.
  • Lobov, Gleb, et al. (författare)
  • Optical birefringence from P3HT nanofibers in alternating electric field
  • 2016
  • Ingår i: Optics InfoBase Conference Papers. - : OSA - The Optical Society. - 9781943580194
  • Konferensbidrag (refereegranskat)abstract
    • AC poling allowing to control the orientation of P3HT nanofibers, result in strong optical birefringence with promising implementation in a novel type of optical modulator, without necessary embedding into any hosting matrix, e.g. liquid crystal.
  •  
4.
  • Lobov, Gleb S., et al. (författare)
  • Size Impact of Ordered P3HT Nanofibers on Optical Anisotropy
  • 2016
  • Ingår i: Macromolecular Chemistry and Physics. - : John Wiley & Sons. - 1022-1352 .- 1521-3935. ; 217:9, s. 1089-1095
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-3-hexylthiophene (P3HT) nanofibers are 1D crystalline structures with semiconductor properties. When P3HT nanofi bers are dispersed in nonconducting solvent, they react to external alternate electric field by aligning along the field lines. This can be used to create layers of ordered nanofi bers and is referred to as alternating current poling method. P3HT nanofi bers with three different size distributions are fabricated, using self-assembly mechanism in marginal solvents, and used for the alignment studies. Anisotropic absorption of oriented 2 mu m long nanofi bers exponentially increases with the magnitude of applied field to a certain asymptotic limit at 0.8 V mu m(-1), while 100-500 nm long nanofi bers respond to electric field negligibly. Effective optical birefringence of oriented 2 mu m long nanofi bers is calculated, based on the phase shift at 633 nm and the average layer thickness, to be 0.41. These results combined with further studies on real-time control over orientation of P3HT nanofi bers in liquid solution or host system are promising in terms of exploiting them in electroabsorptive and electrorefractive applications.
  •  
5.
  • Zhao, Yichen (författare)
  • Semiconducting Polymer Nanofibers and Quantum Dot based Nanocomposites for Optoelectronic Applications
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanostructured materials have attracted a broad interest in various technologies such as optoelectronics. In this thesis, nanostructured semiconductor nanocrystals, including inorganic and organic materials, were fabricated by solution based methods. The reaction conditions were optimized to control the size and morphology of the obtained nanocrystals. The optical and photoelectric properties of nanocrystals were evaluated for potential optoelectronic applications.Colloidal CdSe quantum dots (QDs) were synthesized via thermolysis method and layers of CdS was further grown on the core CdSe QDs to form a core-shell heterostructure quantum dots (HQDs). The optical properties of HQDs were evaluated and showed the characteristics of quasi-type-II alignment of energy levels, which has potential for excitonic solar cell (XSC) application.Nanofibers of the semiconducting polymer poly-(3-hexylthiophene) (P3HT) were synthesized via a modified whisker method. In order to control the size (both the length and the diameter) of nanofibers, we systematically studied the ratio between mixture solvents and the solute concentration. In addition, the degradation processes of P3HT nanofibers on different substrates under various environments were investigated. We found that the degradation of P3HT nanofibers can be effectively suppressed by using the substrate of higher conductivity. A nanocomposite consisting of HQDs and P3HT nanofibers was fabricated and its photoelectric properties were evaluated by I-V measurements. A ‘turn-on’ voltage was found and revealed the localization of excited holes within the HQDs, which confirmed the quasi-type-II alignment between core and shell energy levels.In addition, we aligned the P3HT nanofibers by applying the external electric field. Alternating current (AC) and direct current (DC) induced alignments of P3HT nanofibers were investigated respectively to study the effects of different electric fields on the alignment behavior. It was determined that the AC electric field allowed a better alignment of nanofibers. Moreover, two different lengths of P3HT nanofibers were aligned and their absorption spectra were measured. Under polarized light beams, we observed a better aligned pattern in the case of longer nanofibers, shown as a higher dichroic ratio calculated from optical absorption spectra. These aligned nanofibers may find applications in optoelectronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy