SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Yongqiang.) srt2:(2020-2024)"

Sökning: WFRF:(Zhao Yongqiang.) > (2020-2024)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Han, Ziqi, et al. (författare)
  • Regulating the miscibility of donors/acceptors to manipulate the morphology and reduce non-radiative recombination energy loss enables efficient organic solar cells
  • 2024
  • Ingår i: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534.
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the high exciton binding energy and relatively low charge carrier mobilities of organic photovoltaic materials, it is crucial to optimize the active layer morphology of organic solar cells (OSCs) to well juggle exciton dissociation and charge carrier transport, and inhibit charge carrier recombination for high power conversion efficiencies (PCEs). Herein, we efficiently improve the crystallinity and miscibility of fused ring electron acceptors (FREAs) via lengthening the side chains and developing four FREAs, BTP-nC8, BTP-C8, BTP-C12 and BTP-C20. The dual functions of lengthening the side chains of FREAs make PM6:FREA blend films present the tendency of first improving then deteriorating in crystallinity, phase separation, domain purity and thus charge carrier dynamics, which leads the JSC and FF of PM6:FREA-based OSCs to show the same trend along with the side-chain length of FREAs. More importantly, enhancing the miscibility between PM6 and FREA facilitates the spatial registry to reduce the formation and recombination rate of triplet excitons in the PM6:FREA blend films, thus inhibiting the non-radiative recombination for decreased Delta Enr, and then increasing VOC in OSCs. Among them, PM6:BTP-C8 based OSCs well balance the multiple impacts of lengthening the side chains to achieve the highest PCE of 17.77%. This work demonstrates that it is important to finely control the crystallinity and miscibility of organic photovoltaic materials to achieve high PCEs in OSCs. The miscibility and crystallinity of fused ring electron acceptors is regulated to study the effects on the morphology and energy loss of organic solar cells (OSCs). BTP-C8 based OSCs juggle multiple impacts to gain the best efficiency.
  •  
2.
  • Zhou, Yongqiang, et al. (författare)
  • How hydrology and anthropogenic activity influence the molecular composition and export of dissolved organic matter : Observations along a large river continuum
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:5, s. 1730-1742
  • Tidskriftsartikel (refereegranskat)abstract
    • Large rivers are the main arteries for transportation of carbon to the ocean; yet, how hydrology and anthropogenic disturbances may change the composition and export of dissolved organic matter along large river continuums is largely unknown. The Yangtze River has a watershed area of 1.80 x 10(6) km(2). It originates from the Qinghai-Tibet Plateau and flows 6300 km eastward through the center of China. We collected samples (n = 271) along the river continuum and analyzed weekly samples at the most downstream situated gauging station in 2017-2018 and gathered long-term (2006-2018) water quality data. We found higher gross domestic product, population density, and urban and agricultural land use downstream than upstream of the Three Gorges Dam, coinciding with higher dissolved organic carbon (DOC), UV absorption (a(254)), specific ultraviolet absorbance (SUVA(254)), parallel factor analysis-derived C1-C5, aliphatic compounds, and lower a(250):a(365) and spectral slope (S275-295). Chemical oxygen demand, humic-like C1-C2 and C6, and protein-like C4 and C7 increased, while dissolved oxygen and ammonium decreased with increasing discharge at most of the sites studied, including the intensively monitored downstream site. The annual DOC fluxes were ca. 1.5-1.8 Tg yr(-1), and 12-18% was biodegradable in a 28-d bio-incubation. Our results highlight that urbanization and stormwater periods enhanced the export of both terrestrial organic-rich substances and household effluents from nearshore residential areas. Our study emphasizes the continued need to protect the Yangtze River watershed as increased organic carbon loading or altered composition and bio-lability may change the ecosystem function and carbon cycling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy